Results 11  20
of
632
Multiple Shrinkage and Subset Selection in Wavelets
, 1997
"... This paper discusses Bayesian methods for multiple shrinkage estimation in wavelets. Wavelets are used in applications for data denoising, via shrinkage of the coefficients towards zero, and for data compression, by shrinkage and setting small coefficients to zero. We approach wavelet shrinkage by u ..."
Abstract

Cited by 118 (16 self)
 Add to MetaCart
This paper discusses Bayesian methods for multiple shrinkage estimation in wavelets. Wavelets are used in applications for data denoising, via shrinkage of the coefficients towards zero, and for data compression, by shrinkage and setting small coefficients to zero. We approach wavelet shrinkage by using Bayesian hierarchical models, assigning a positive prior probability to the wavelet coefficients being zero. The resulting estimator for the wavelet coefficients is a multiple shrinkage estimator that exhibits a wide variety of nonlinear shrinkage patterns. We discuss fast computational implementations, with a focus on easytocompute analytic approximations as well as importance sampling and Markov chain Monte Carlo methods. Multiple shrinkage estimators prove to have excellent mean squared error performance in reconstructing standard test functions. We demonstrate this in simulated test examples, comparing various implementations of multiple shrinkage to commonly used shrinkage rules. Finally, we illustrate our approach with an application to the socalled "glint" data.
Practical Bayesian Density Estimation Using Mixtures Of Normals
 Journal of the American Statistical Association
, 1995
"... this paper, we propose some solutions to these problems. Our goal is to come up with a simple, practical method for estimating the density. This is an interesting problem in its own right, as well as a first step towards solving other inference problems, such as providing more flexible distributions ..."
Abstract

Cited by 116 (2 self)
 Add to MetaCart
this paper, we propose some solutions to these problems. Our goal is to come up with a simple, practical method for estimating the density. This is an interesting problem in its own right, as well as a first step towards solving other inference problems, such as providing more flexible distributions in hierarchical models. To see why the posterior is improper under the usual reference prior, we write the model in the following way. Let Z = (Z 1 ; : : : ; Z n ) and X = (X 1 ; : : : ; X n ). The Z
General state space Markov chains and MCMC algorithm
 PROBABILITY SURVEYS
, 2004
"... This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform e ..."
Abstract

Cited by 114 (27 self)
 Add to MetaCart
This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform ergodicity are presented, along with quantitative bounds on the rate of convergence to stationarity. Many of these results are proved using direct coupling constructions based on minorisation and drift conditions. Necessary and sufficient conditions for Central Limit Theorems (CLTs) are also presented, in some cases proved via the Poisson Equation or direct regeneration constructions. Finally, optimal scaling and weak convergence results for MetropolisHastings algorithms are discussed. None of the results presented is new, though many of the proofs are. We also describe some Open Problems.
Markov Chain Monte Carlo Estimation of Exponential Random Graph Models
 Journal of Social Structure
, 2002
"... This paper is about estimating the parameters of the exponential random graph model, also known as the p # model, using frequentist Markov chain Monte Carlo (MCMC) methods. The exponential random graph model is simulated using Gibbs or MetropolisHastings sampling. The estimation procedures consider ..."
Abstract

Cited by 105 (15 self)
 Add to MetaCart
This paper is about estimating the parameters of the exponential random graph model, also known as the p # model, using frequentist Markov chain Monte Carlo (MCMC) methods. The exponential random graph model is simulated using Gibbs or MetropolisHastings sampling. The estimation procedures considered are based on the RobbinsMonro algorithm for approximating a solution to the likelihood equation.
Analysis of multivariate probit models
 BIOMETRIKA
, 1998
"... This paper provides a practical simulationbased Bayesian and nonBayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods and maximum likelihood estimates are obtained by a Monte Carlo version of the ..."
Abstract

Cited by 100 (6 self)
 Add to MetaCart
This paper provides a practical simulationbased Bayesian and nonBayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods and maximum likelihood estimates are obtained by a Monte Carlo version of the EM algorithm. A practical approach for the computation of Bayes factors from the simulation output is also developed. The methods are applied to a dataset with a bivariate binary response, to a fouryear longitudinal dataset from the Six Cities study of the health effects of air pollution and to a sevenvariate binary response dataset on the labour supply of married women from the Panel Survey of Income Dynamics.
Metropolized Independent Sampling with Comparisons to Rejection Sampling and Importance Sampling
, 1996
"... this paper, a special MetropolisHastings type algorithm, Metropolized independent sampling, proposed firstly in Hastings (1970), is studied in full detail. The eigenvalues and eigenvectors of the corresponding Markov chain, as well as a sharp bound for the total variation distance between the nth ..."
Abstract

Cited by 96 (3 self)
 Add to MetaCart
this paper, a special MetropolisHastings type algorithm, Metropolized independent sampling, proposed firstly in Hastings (1970), is studied in full detail. The eigenvalues and eigenvectors of the corresponding Markov chain, as well as a sharp bound for the total variation distance between the nth updated distribution and the target distribution, are provided. Furthermore, the relationship between this scheme, rejection sampling, and importance sampling are studied with emphasizes on their relative efficiencies. It is shown that Metropolized independent sampling is superior to rejection sampling in two aspects: asymptotic efficiency and ease of computation. Key Words: Coupling, Delta method, Eigen analysis, Importance ratio. 1 1 Introduction
An Adaptive Metropolis algorithm
 Bernoulli
, 1998
"... A proper choice of a proposal distribution for MCMC methods, e.g. for the MetropolisHastings algorithm, is well known to be a crucial factor for the convergence of the algorithm. In this paper we introduce an adaptive Metropolis Algorithm (AM), where the Gaussian proposal distribution is updated al ..."
Abstract

Cited by 95 (4 self)
 Add to MetaCart
A proper choice of a proposal distribution for MCMC methods, e.g. for the MetropolisHastings algorithm, is well known to be a crucial factor for the convergence of the algorithm. In this paper we introduce an adaptive Metropolis Algorithm (AM), where the Gaussian proposal distribution is updated along the process using the full information cumulated so far. Due to the adaptive nature of the process, the AM algorithm is nonMarkovian, but we establish here that it has the correct ergodic properties. We also include the results of our numerical tests, which indicate that the AM algorithm competes well with traditional MetropolisHastings algorithms, and demonstrate that AM provides an easy to use algorithm for practical computation. 1991 Mathematics Subject Classification: 65C05, 65U05. Keywords: adaptive MCMC, comparison, convergence, ergodicity, Markov Chain Monte Carlo, MetropolisHastings algorithm 1 Introduction It is generally acknowledged that the choice of an effective proposal...
A SplitMerge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model
 Journal of Computational and Graphical Statistics
, 2000
"... . We propose a splitmerge Markov chain algorithm to address the problem of inefficient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in isolated modes corresponding to an ..."
Abstract

Cited by 91 (0 self)
 Add to MetaCart
. We propose a splitmerge Markov chain algorithm to address the problem of inefficient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in isolated modes corresponding to an inappropriate clustering of data points. This article describes a MetropolisHastings procedure that can escape such local modes by splitting or merging mixture components. Our MetropolisHastings algorithm employs a new technique in which an appropriate proposal for splitting or merging components is obtained by using a restricted Gibbs sampling scan. We demonstrate empirically that our method outperforms the Gibbs sampler in situations where two or more components are similar in structure. Key words: Dirichlet process mixture model, Markov chain Monte Carlo, MetropolisHastings algorithm, Gibbs sampler, splitmerge updates 1 Introduction Mixture models are often applied to density estim...
Markov Chain Monte Carlo Simulation Methods in Econometrics
, 1993
"... We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literat ..."
Abstract

Cited by 91 (5 self)
 Add to MetaCart
We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the presentation and explanation of applications to important models that are studied in econometrics. We include a discussion of some implementation issues, the use of the methods in connection with the EM algorithm, and how the methods can be helpful in model specification questions. Many of the applications of these methods are of particular interest to Bayesians, but we also point out ways in which frequentist statisticians may find the techniques useful.
Optimal Scaling for Various MetropolisHastings Algorithms
, 2001
"... We review and extend results related to optimal scaling of MetropolisHastings algorithms. We present various theoretical results for the highdimensional limit. We also present simulation studies which confirm the theoretical results in finite dimensional contexts. ..."
Abstract

Cited by 91 (25 self)
 Add to MetaCart
We review and extend results related to optimal scaling of MetropolisHastings algorithms. We present various theoretical results for the highdimensional limit. We also present simulation studies which confirm the theoretical results in finite dimensional contexts.