Results 11  20
of
542
Analysis of multivariate probit models
 BIOMETRIKA
, 1998
"... This paper provides a practical simulationbased Bayesian and nonBayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods and maximum likelihood estimates are obtained by a Monte Carlo version of the ..."
Abstract

Cited by 102 (6 self)
 Add to MetaCart
This paper provides a practical simulationbased Bayesian and nonBayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods and maximum likelihood estimates are obtained by a Monte Carlo version of the EM algorithm. A practical approach for the computation of Bayes factors from the simulation output is also developed. The methods are applied to a dataset with a bivariate binary response, to a fouryear longitudinal dataset from the Six Cities study of the health effects of air pollution and to a sevenvariate binary response dataset on the labour supply of married women from the Panel Survey of Income Dynamics.
An exact likelihood analysis of the multinomial probit model
, 1994
"... We develop new methods for conducting a finite sample, likelihoodbased analysis of the multinomial probit model. Using a variant of the Gibbs sampler, an algorithm is developed to draw from the exact posterior of the multinomial probit model with correlated errors. This approach avoids direct evalu ..."
Abstract

Cited by 90 (4 self)
 Add to MetaCart
We develop new methods for conducting a finite sample, likelihoodbased analysis of the multinomial probit model. Using a variant of the Gibbs sampler, an algorithm is developed to draw from the exact posterior of the multinomial probit model with correlated errors. This approach avoids direct evaluation of the likelihood and, thus, avoids the problems associated with calculating choice probabilities which affect both the standard likelihood and method of simulated moments approaches. Both simulated and actual consumer panel data are used to fit sixdimensional choice models. We also develop methods for analyzing random coefficient and multiperiod probit models.
Latin Supercube Sampling for Very High Dimensional Simulations
, 1997
"... This paper introduces Latin supercube sampling (LSS) for very high dimensional simulations, such as arise in particle transport, finance and queuing. LSS is developed as a combination of two widely used methods: Latin hypercube sampling (LHS), and QuasiMonte Carlo (QMC). In LSS, the input variables ..."
Abstract

Cited by 71 (7 self)
 Add to MetaCart
This paper introduces Latin supercube sampling (LSS) for very high dimensional simulations, such as arise in particle transport, finance and queuing. LSS is developed as a combination of two widely used methods: Latin hypercube sampling (LHS), and QuasiMonte Carlo (QMC). In LSS, the input variables are grouped into subsets, and a lower dimensional QMC method is used within each subset. The QMC points are presented in random order within subsets. QMC methods have been observed to lose effectiveness in high dimensional problems. This paper shows that LSS can extend the benefits of QMC to much higher dimensions, when one can make a good grouping of input variables. Some suggestions for grouping variables are given for the motivating examples. Even a poor grouping can still be expected to do as well as LHS. The paper also extends LHS and LSS to infinite dimensional problems. The paper includes a survey of QMC methods, randomized versions of them (RQMC) and previous methods for extending Q...
Boltzmann Samplers For The Random Generation Of Combinatorial Structures
 Combinatorics, Probability and Computing
, 2004
"... This article proposes a surprisingly simple framework for the random generation of combinatorial configurations based on what we call Boltzmann models. The idea is to perform random generation of possibly complex structured objects by placing an appropriate measure spread over the whole of a combina ..."
Abstract

Cited by 68 (2 self)
 Add to MetaCart
This article proposes a surprisingly simple framework for the random generation of combinatorial configurations based on what we call Boltzmann models. The idea is to perform random generation of possibly complex structured objects by placing an appropriate measure spread over the whole of a combinatorial class  an object receives a probability essentially proportional to an exponential of its size. As demonstrated here, the resulting algorithms based on realarithmetic operations often operate in linear time. They can be implemented easily, be analysed mathematically with great precision, and, when suitably tuned, tend to be very efficient in practice.
2001): “Clarify: Software for Interpreting and Presenting Statistical Results
 Journal of Statistical Software
"... and distribute this program provided that no charge is made and the copy is identical to the original. To request an exception, please contact Michael Tomz. Contents 1 ..."
Abstract

Cited by 67 (0 self)
 Add to MetaCart
and distribute this program provided that no charge is made and the copy is identical to the original. To request an exception, please contact Michael Tomz. Contents 1
Anytime pointbased approximations for large pomdps
 Journal of Artificial Intelligence Research
, 2006
"... The Partially Observable Markov Decision Process has long been recognized as a rich framework for realworld planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A wellknown tech ..."
Abstract

Cited by 61 (6 self)
 Add to MetaCart
The Partially Observable Markov Decision Process has long been recognized as a rich framework for realworld planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A wellknown technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with pointbased value backups to form an effective anytime POMDP algorithm called PointBased Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other stateoftheart POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks.
Stability and Uniform Approximation of Nonlinear Filters Using the Hilbert Metric, and Application to Particle Filters
, 2002
"... this article, we use the approach based on the Hilbert metric to study the asymptotic behavior of the optimal filter, and to prove as in [9] the uniform convergence of several particle filters, such as the interacting particle filter (IPF) and some other original particle filters. A common assumptio ..."
Abstract

Cited by 60 (5 self)
 Add to MetaCart
this article, we use the approach based on the Hilbert metric to study the asymptotic behavior of the optimal filter, and to prove as in [9] the uniform convergence of several particle filters, such as the interacting particle filter (IPF) and some other original particle filters. A common assumption to prove stability results, see e.g. in [9, Theorem 2.4], is that the Markov transition kernels are mixing, which implies that the hidden state sequence is ergodic. Our results are obtained under the assumption that the nonnegative kernels describing the evolution of the unnormalized optimal filter, and incorporating simultaneously the Markov transition kernels and the likelihood functions, are mixing. This is a weaker assumption, see Proposition 3.9, which allows to consider some cases, similar to the case studied in [6], where the hidden state sequence is not ergodic, see Example 3.10. This point of view is further developped by Le Gland and Oudjane in [22] and by Oudjane and Rubenthaler in [28]. Our main contribution is to study also the stability of the optimal filter w.r.t. the model, when the local error is propagated by mixing kernels, and can be estimated in the Hilbert metric, in the total variation norm, or in a weaker distance suitable for random probability distributions. AMS 1991 subject classifications. Primary 93E11, 93E15, 62E25; secondary 60B10, 60J27, 62G07, 62G09, 62L10
The CrossEntropy Method for Combinatorial and Continuous Optimization
, 1999
"... We present a new and fast method, called the crossentropy method, for finding the optimal solution of combinatorial and continuous nonconvex optimization problems with convex bounded domains. To find the optimal solution we solve a sequence of simple auxiliary smooth optimization problems based on ..."
Abstract

Cited by 58 (7 self)
 Add to MetaCart
We present a new and fast method, called the crossentropy method, for finding the optimal solution of combinatorial and continuous nonconvex optimization problems with convex bounded domains. To find the optimal solution we solve a sequence of simple auxiliary smooth optimization problems based on KullbackLeibler crossentropy, importance sampling, Markov chain and Boltzmann distribution. We use importance sampling as an important ingredient for adaptive adjustment of the temperature in the Boltzmann distribution and use KullbackLeibler crossentropy to find the optimal solution. In fact, we use the mode of a unimodal importance sampling distribution, like the mode of beta distribution, as an estimate of the optimal solution for continuous optimization and Markov chains approach for combinatorial optimization. In the later case we show almost surely convergence of our algorithm to the optimal solution. Supporting numerical results for both continuous and combinatorial optimization problems are given as well. Our empirical studies suggest that the crossentropy method has polynomial in the size of the problem running time complexity.
Universal Limit Laws for Depths in Random Trees
 SIAM Journal on Computing
, 1998
"... Random binary search trees, bary search trees, medianof(2k+1) trees, quadtrees, simplex trees, tries, and digital search trees are special cases of random split trees. For these trees, we o#er a universal law of large numbers and a limit law for the depth of the last inserted point, as well as a ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
Random binary search trees, bary search trees, medianof(2k+1) trees, quadtrees, simplex trees, tries, and digital search trees are special cases of random split trees. For these trees, we o#er a universal law of large numbers and a limit law for the depth of the last inserted point, as well as a law of large numbers for the height.