Results 1  10
of
1,519
Evolving Artificial Neural Networks
, 1999
"... This paper: 1) reviews different combinations between ANN's and evolutionary algorithms (EA's), including using EA's to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EA's; and 3) points out po ..."
Abstract

Cited by 411 (6 self)
 Add to MetaCart
This paper: 1) reviews different combinations between ANN's and evolutionary algorithms (EA's), including using EA's to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EA's; and 3) points out possible future research directions. It is shown, through a considerably large literature review, that combinations between ANN's and EA's can lead to significantly better intelligent systems than relying on ANN's or EA's alone
Empirical exchange rate models of the Seventies: do they t outofsample
 Journal of International Economics
, 1983
"... This study compares the outofsample forecasting accuracy of various structural and time series exchange rate models. We find that a random walk model performs as well as any estimated model at one to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and tradeweighted dollar excha ..."
Abstract

Cited by 404 (5 self)
 Add to MetaCart
This study compares the outofsample forecasting accuracy of various structural and time series exchange rate models. We find that a random walk model performs as well as any estimated model at one to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and tradeweighted dollar exchange rates. The candidate structural models include the flexibleprice (FrenkelBilson) and stickyprice (DornbuschFrankel) monetary models, and a stickyprice model which incorporates the current account (HooperMorton). The structural models perform poorly despite the fact that we base their forecasts on actual realized values of future explanatory variables. 1.
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 373 (48 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems
 Proceedings of the IEEE
, 1998
"... this paper. Let us place it within the neural network perspective, and particularly that of learning. The area of neural networks has greatly benefited from its unique position at the crossroads of several diverse scientific and engineering disciplines including statistics and probability theory, ph ..."
Abstract

Cited by 248 (11 self)
 Add to MetaCart
this paper. Let us place it within the neural network perspective, and particularly that of learning. The area of neural networks has greatly benefited from its unique position at the crossroads of several diverse scientific and engineering disciplines including statistics and probability theory, physics, biology, control and signal processing, information theory, complexity theory, and psychology (see [45]). Neural networks have provided a fertile soil for the infusion (and occasionally confusion) of ideas, as well as a meeting ground for comparing viewpoints, sharing tools, and renovating approaches. It is within the illdefined boundaries of the field of neural networks that researchers in traditionally distant fields have come to the realization that they have been attacking fundamentally similar optimization problems.
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 231 (3 self)
 Add to MetaCart
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
A neuropsychological theory of multiple systems in category learning
 PSYCHOLOGICAL REVIEW
, 1998
"... A neuropsychological theory is proposed that assumes category learning is a competition between separate verbal and implicit (i.e., procedurallearningbased) categorization systems. The theory assumes that the caudate nucleus is an important component of the implicit system and that the anterior ci ..."
Abstract

Cited by 229 (24 self)
 Add to MetaCart
A neuropsychological theory is proposed that assumes category learning is a competition between separate verbal and implicit (i.e., procedurallearningbased) categorization systems. The theory assumes that the caudate nucleus is an important component of the implicit system and that the anterior cingulate and prefrontal cortices are critical to the verbal system. In addition to making predictions for normal human adults, the theory makes specific predictions for children, elderly people, and patients suffering from Parkinson's disease, Huntington's disease, major depression, amnesia, or lesions of the prefrontal cortex. Two separate formal descriptions of the theory are also provided. One describes trialbytrial learning, and the other describes global dynamics. The theory is tested on published neuropsychological data and on category learning data with normal adults.
The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems
, 1992
"... We present an analysis of how the generalization performance (expected test set error) relates to the expected training set error for nonlinear learning systems, such as multilayer perceptrons and radial basis functions. The principal result is the following relationship (computed to second order ..."
Abstract

Cited by 171 (2 self)
 Add to MetaCart
We present an analysis of how the generalization performance (expected test set error) relates to the expected training set error for nonlinear learning systems, such as multilayer perceptrons and radial basis functions. The principal result is the following relationship (computed to second order) between the expected test set and training set errors: hE test ()i 0 hE train ()i + 2oe 2 eff p eff () n : (1) Here, n is the size of the training sample , oe 2 eff is the effective noise variance in the response variable(s), is a regularization or weight decay parameter, and p eff () is the effective number of parameters in the nonlinear model. The expectations h i of training set and test set errors are taken over possible training sets and training and test sets 0 respectively. The effective number of parameters p eff () usually differs from the true number of model parameters p for nonlinear or regularized models; this theoretical conclusion is supported by M...
Hidden Markov processes
 IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite ..."
Abstract

Cited by 170 (3 self)
 Add to MetaCart
Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finitestate finitealphabet HMPs was expanded to HMPs with finite as well as continuous state spaces and a general alphabet. In particular, statistical properties and ergodic theorems for relative entropy densities of HMPs were developed. Consistency and asymptotic normality of the maximumlikelihood (ML) parameter estimator were proved under some mild conditions. Similar results were established for switching autoregressive processes. These processes generalize HMPs. New algorithms were developed for estimating the state, parameter, and order of an HMP, for universal coding and classification of HMPs, and for universal decoding of hidden Markov channels. These and other related topics are reviewed in this paper. Index Terms—Baum–Petrie algorithm, entropy ergodic theorems, finitestate channels, hidden Markov models, identifiability, Kalman filter, maximumlikelihood (ML) estimation, order estimation, recursive parameter estimation, switching autoregressive processes, Ziv inequality. I.
A fast and flexible statistical model for largescale population genotype data: Applications to inferring missing genotypes and haplotype phase
 American Journal of Human Genetics
, 2005
"... We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster into groups of similar haplotypes. To capture the fact that, because of ..."
Abstract

Cited by 156 (6 self)
 Add to MetaCart
We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster into groups of similar haplotypes. To capture the fact that, because of recombination, this clustering tends to be local in nature, our model allows cluster memberships to change continuously along the chromosome according to a hidden Markov model. This approach is flexible, allowing for both “blocklike ” patterns of linkage disequilibrium (LD) and gradual decline in LD with distance. The resulting model is also fast and, as a result, is practicable for large data sets (e.g., thousands of individuals typed at hundreds of thousands of markers). We illustrate the utility of the model by applying it to dense singlenucleotide–polymorphism genotype data for the tasks of imputing missing genotypes and estimating haplotypic phase. For imputing missing genotypes, methods based on this model are as accurate or more accurate than existing methods. For haplotype estimation, the point estimates are slightly less accurate than those from the best existing methods (e.g., for unrelated Centre d’Etude du Polymorphisme Humain individuals from the HapMap project, switch error was 0.055 for our method vs. 0.051 for PHASE) but require a small fraction of the computational cost. In addition, we demonstrate that the model accurately reflects uncertainty in its estimates, in that probabilities computed using the model are approximately well calibrated. The methods described in this article are implemented in a software package, fastPHASE, which is available from the
Network Information Criterion  Determining the Number of Hidden Units for an Artificial Neural Network Model
 IEEE Transactions on Neural Networks
, 1994
"... The problem of model selection, or determination of the number of hidden units, can be approached statistically, by generalizing Akaike's information criterion (AIC) to be applicable to unfaithful (i.e., unrealizable) models with general loss criteria including regularization terms. The relation bet ..."
Abstract

Cited by 151 (8 self)
 Add to MetaCart
The problem of model selection, or determination of the number of hidden units, can be approached statistically, by generalizing Akaike's information criterion (AIC) to be applicable to unfaithful (i.e., unrealizable) models with general loss criteria including regularization terms. The relation between the training error and the generalization error is studied in terms of the number of the training examples and the complexity of a network which reduces to the number of parameters in the ordinary statistical theory of the AIC. This relation leads to a new Network Information Criterion (NIC) which is useful for selecting the optimal network model based on a given training set. 3 IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 865872, November 1994 y Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 731 Hongo, Bunkyoku, Tokyo 113, Japan. 1 Introduction In engineering fields, one of the most important applicati...