Results 11  20
of
1,006
Soft Margins for AdaBoost
, 1998
"... Recently ensemble methods like AdaBoost were successfully applied to character recognition tasks, seemingly defying the problems of overfitting. This paper shows that although AdaBoost rarely overfits in the low noise regime it clearly does so for higher noise levels. Central for understanding this ..."
Abstract

Cited by 256 (22 self)
 Add to MetaCart
Recently ensemble methods like AdaBoost were successfully applied to character recognition tasks, seemingly defying the problems of overfitting. This paper shows that although AdaBoost rarely overfits in the low noise regime it clearly does so for higher noise levels. Central for understanding this fact is the margin distribution and we find that AdaBoost achieves  doing gradient descent in an error function with respect to the margin  asymptotically a hard margin distribution, i.e. the algorithm concentrates its resources on a few hardtolearn patterns (here an interesting overlap emerge to Support Vectors). This is clearly a suboptimal strategy in the noisy case, and regularization, i.e. a mistrust in the data, must be introduced in the algorithm to alleviate the distortions that a difficult pattern (e.g. outliers) can cause to the margin distribution. We propose several regularization methods and generalizations of the original AdaBoost algorithm to achieve a soft margin  a ...
Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection
 IN CVPR
, 2004
"... We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multiclass boosting procedure (joint boosting) ..."
Abstract

Cited by 240 (16 self)
 Add to MetaCart
We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multiclass boosting procedure (joint boosting) that reduces both the computational and sample complexity, by finding common features that can be shared across the classes. The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required is observed to scale approximately logarithmically with the number of classes. In addition, we find that the features selected by independently trained classifiers are often specific to the class, whereas the features selected by the jointly trained classifiers are more generic features, such as lines and edges.
Logistic Regression, AdaBoost and Bregman Distances
, 2000
"... We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt al ..."
Abstract

Cited by 203 (43 self)
 Add to MetaCart
We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt algorithms designed for one problem to the other. For both problems, we give new algorithms and explain their potential advantages over existing methods. These algorithms can be divided into two types based on whether the parameters are iteratively updated sequentially (one at a time) or in parallel (all at once). We also describe a parameterized family of algorithms which interpolates smoothly between these two extremes. For all of the algorithms, we give convergence proofs using a general formalization of the auxiliaryfunction proof technique. As one of our sequentialupdate algorithms is equivalent to AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our algorithms generalize easily to the multiclass case, and we contrast the new algorithms with iterative scaling. We conclude with a few experimental results with synthetic data that highlight the behavior of the old and newly proposed algorithms in different settings.
Ensemble Tracking
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained online to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pi ..."
Abstract

Cited by 189 (0 self)
 Add to MetaCart
We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained online to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pixels in the next frame as either belonging to the object or the background, giving a confidence map. The peak of the map, and hence the new position of the object, is found using mean shift. Temporal coherence is maintained by updating the ensemble with new weak classifiers that are trained online during tracking. We show a realization of this method and demonstrate it on several video sequences. 1
Popular ensemble methods: an empirical study
 Journal of Artificial Intelligence Research
, 1999
"... An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Baggi ..."
Abstract

Cited by 181 (3 self)
 Add to MetaCart
An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund & Schapire, 1996; Schapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier – especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble’s performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees. 1.
Sharing Visual Features for Multiclass And Multiview Object Detection
, 2004
"... We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each clas ..."
Abstract

Cited by 178 (4 self)
 Add to MetaCart
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (runtime) computational complexity, and the (trainingtime) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects.
Geometric Context from a Single Image
 In ICCV
, 2005
"... Many computer vision algorithms limit their performance by ignoring the underlying 3D geometric structure in the image. We show that we can estimate the coarse geometric properties of a scene by learning appearancebased models of geometric classes, even in cluttered natural scenes. Geometric classe ..."
Abstract

Cited by 169 (33 self)
 Add to MetaCart
Many computer vision algorithms limit their performance by ignoring the underlying 3D geometric structure in the image. We show that we can estimate the coarse geometric properties of a scene by learning appearancebased models of geometric classes, even in cluttered natural scenes. Geometric classes describe the 3D orientation of an image region with respect to the camera. We provide a multiplehypothesis framework for robustly estimating scene structure from a single image and obtaining confidences for each geometric label. These confidences can then be used to improve the performance of many other applications. We provide a thorough quantitative evaluation of our algorithm on a set of outdoor images and demonstrate its usefulness in two applications: object detection and automatic singleview reconstruction.
Image Parsing: Unifying Segmentation, Detection, and Recognition
, 2005
"... In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The ..."
Abstract

Cited by 160 (18 self)
 Add to MetaCart
In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and reconfigures it dynamically using a set of reversible Markov chain jumps. This computational framework integrates two popular inference approaches  generative (topdown) methods and discriminative (bottomup) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottomup tests/filters.
Optimal aggregation of classifiers in statistical learning
 Ann. Statist
, 2004
"... Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of cand ..."
Abstract

Cited by 153 (5 self)
 Add to MetaCart
Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of candidate sets and the margin parameter. The dependence is explicitly given, indicating that optimal fast rates approaching O(n−1) can be attained, where n is the sample size, and that the proposed classifiers have the property of robustness to the margin. The main result of the paper concerns optimal aggregation of classifiers: we suggest a classifier that automatically adapts both to the complexity and to the margin, and attains the optimal fast rates, up to a logarithmic factor. 1. Introduction. Let (Xi,Yi)
Stochastic Gradient Boosting
 Computational Statistics and Data Analysis
, 1999
"... Gradient boosting constructs additive regression models by sequentially fitting a simple parameterized function (base learner) to current "pseudo"residuals by leastsquares at each iteration. The pseudoresiduals are the gradient of the loss functional being minimized, with respect to the model ..."
Abstract

Cited by 146 (1 self)
 Add to MetaCart
Gradient boosting constructs additive regression models by sequentially fitting a simple parameterized function (base learner) to current "pseudo"residuals by leastsquares at each iteration. The pseudoresiduals are the gradient of the loss functional being minimized, with respect to the model values at each training data point, evaluated at the current step. It is shown that both the approximation accuracy and execution speed of gradient boosting can be substantially improved by incorporating randomization into the procedure. Specifically, at each iteration a subsample of the training data is drawn at random (without replacement) from the full training data set. This randomly selected subsample is then used in place of the full sample to fit the base learner and compute the model update for the current iteration. This randomized approach also increases robustness against overcapacity of the base learner. 1 Gradient Boosting In the function estimation problem one has a system con...