Results 1 
2 of
2
Simplicial Decomposition with Disaggregated Representation for the Traffic Assignment Problem
 Transportation Science
, 1991
"... The class of simplicial decomposition (SD) schemes have shown to provide efficient tools for nonlinear network flows. When applied to the traffic assignment problem, shortest route subproblems are solved in order to generate extreme points of the polyhedron of feasible flows, and, alternately, maste ..."
Abstract

Cited by 32 (20 self)
 Add to MetaCart
The class of simplicial decomposition (SD) schemes have shown to provide efficient tools for nonlinear network flows. When applied to the traffic assignment problem, shortest route subproblems are solved in order to generate extreme points of the polyhedron of feasible flows, and, alternately, master problems are solved over the convex hull of the generated extreme points. We review the development of simplicial decomposition and the closely related column generation methods for the traffic assignment problem; we then present a modified, disaggregated, representation of feasible solutions in SD algorithms for convex problems over Cartesian product sets, with application to the symmetric traffic assignment problem. The new algorithm, which is referred to as disaggregate simplicial decomposition (DSD), is given along with a specialized solution method for the disaggregate master problem. Numerical results for several well known test problems and a new one are presented. These experimenta...
Some Generalizations Of The CrissCross Method For Quadratic Programming
 MATH. OPER. UND STAT. SER. OPTIMIZATION
, 1992
"... Three generalizations of the crisscross method for quadratic programming are presented here. Tucker's, Cottle's and Dantzig's principal pivoting methods are specialized as diagonal and exchange pivots for the linear complementarity problem obtained from a convex quadratic program. A finite criss ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
Three generalizations of the crisscross method for quadratic programming are presented here. Tucker's, Cottle's and Dantzig's principal pivoting methods are specialized as diagonal and exchange pivots for the linear complementarity problem obtained from a convex quadratic program. A finite crisscross method, based on leastindex resolution, is constructed for solving the LCP. In proving finiteness, orthogonality properties of pivot tableaus and positive semidefiniteness of quadratic matrices are used. In the last section some special cases and two further variants of the quadratic crisscross method are discussed. If the matrix of the LCP has full rank, then a surprisingly simple algorithm follows, which coincides with Murty's `Bard type schema' in the P matrix case.