Results 1 
3 of
3
Some Generalizations Of The CrissCross Method For Quadratic Programming
 MATH. OPER. UND STAT. SER. OPTIMIZATION
, 1992
"... Three generalizations of the crisscross method for quadratic programming are presented here. Tucker's, Cottle's and Dantzig's principal pivoting methods are specialized as diagonal and exchange pivots for the linear complementarity problem obtained from a convex quadratic program. ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
Three generalizations of the crisscross method for quadratic programming are presented here. Tucker's, Cottle's and Dantzig's principal pivoting methods are specialized as diagonal and exchange pivots for the linear complementarity problem obtained from a convex quadratic program. A finite crisscross method, based on leastindex resolution, is constructed for solving the LCP. In proving finiteness, orthogonality properties of pivot tableaus and positive semidefiniteness of quadratic matrices are used. In the last section some special cases and two further variants of the quadratic crisscross method are discussed. If the matrix of the LCP has full rank, then a surprisingly simple algorithm follows, which coincides with Murty's `Bard type schema' in the P matrix case.
The Linear Complementarity Problem, Sufficient Matrices and the CrissCross Method
, 1990
"... Specially structured Linear Complementarity Problems (LCP's) and their solution by the crisscross method are examined in this paper. The crisscross method is known to be finite for LCP's with positive semidefinite bisymmetric matrices and with Pmatrices. It is also a simple finite algor ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
Specially structured Linear Complementarity Problems (LCP's) and their solution by the crisscross method are examined in this paper. The crisscross method is known to be finite for LCP's with positive semidefinite bisymmetric matrices and with Pmatrices. It is also a simple finite algorithm for oriented matroid programming problems. Recently Cottle, Pang and Venkateswaran identified the class of (column, row) sufficient matrices. They showed that sufficient matrices are a common generalization of P and PSDmatrices. Cottle also showed that the principal pivoting method (with a clever modification) can be applied to row sufficient LCP's. In this paper the finiteness of the crisscross method for sufficient LCP's is proved. Further it is shown that a matrix is sufficient if and only if the crisscross method processes all the LCP's defined by this matrix and all the LCP's defined by the transpose of this matrix and any parameter vector.
A Polynomial Method of Weighted Centers for Convex Quadratic Programming
 JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
, 1991
"... A generalization of the weighted central pathfollowing method for convex quadratic programming is presented. This is done by uniting and modifying the main ideas of the weighted central pathfollowing method for linear programming and the interior point methods for convex quadratic programming. B ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
A generalization of the weighted central pathfollowing method for convex quadratic programming is presented. This is done by uniting and modifying the main ideas of the weighted central pathfollowing method for linear programming and the interior point methods for convex quadratic programming. By means of the linear approximation of the weighted logarithmic barrier function and weighted inscribed ellipsoids, `weighted' trajectories are defined. Each strictly feasible primal dual point pair define such a weighted trajectory. The algorithm can start in any strictly feasible primaldual point pair that defines a weighted trajectory, which is followed through the algorithm. This algorithm has the nice feature, that it is not necessary to start the algorithm close to the central path and so additional transformations are not needed. In return, the theoretical complexity of our algorithm is dependent on the position of the starting point. Polynomiality is proved under the usual mild conditions.