Results 1 
2 of
2
On a Homogeneous Algorithm for the Monotone Complementarity Problem
 Mathematical Programming
, 1995
"... We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility and compleme ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility and complementarity simultaneously or a certificate proving infeasibility. Moreover, if the MCP is polynomially solvable with an interior feasible starting point, then it can be polynomially solved without using or knowing such information at all. To our knowledge, this is the first interiorpoint and infeasiblestarting algorithm for solving the MCP that possesses these desired features. Preliminary computational results are presented. Key words: Monotone complementarity problem, homogeneous and selfdual, infeasiblestarting algorithm. Running head: A homogeneous algorithm for MCP. Department of Management, Odense University, Campusvej 55, DK5230 Odense M, Denmark, email: eda@busieco.ou.dk. y De...
A Computational Study of the Homogeneous Algorithm for LargeScale Convex Optimization
, 1997
"... Recently the authors have proposed a homogeneous and selfdual algorithm for solving the monotone complementarity problem (MCP) [5]. The algorithm is a single phase interiorpoint type method, nevertheless it yields either an approximate optimal solution or detects a possible infeasibility of th ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
Recently the authors have proposed a homogeneous and selfdual algorithm for solving the monotone complementarity problem (MCP) [5]. The algorithm is a single phase interiorpoint type method, nevertheless it yields either an approximate optimal solution or detects a possible infeasibility of the problem. In this paper we specialize the algorithm to the solution of general smooth convex optimization problems that also possess nonlinear inequality constraints and free variables. We discuss an implementation of the algorithm for largescale sparse convex optimization. Moreover, we present computational results for solving quadratically constrained quadratic programming and geometric programming problems, where some of the problems contain more than 100,000 constraints and variables. The results indicate that the proposed algorithm is also practically efficient. Department of Management, Odense University, Campusvej 55, DK5230 Odense M, Denmark. Email: eda@busieco.ou.dk y ...