Results 1  10
of
130
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
, 2001
"... We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions ..."
Abstract

Cited by 2309 (75 self)
 Add to MetaCart
We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and naturallanguage data. 1.
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 439 (18 self)
 Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial distributions over a discrete vocabulary, and the HMM parameters are set to maximize the likelihood of the observations. This paper presents a new Markovian sequence model, closely related to HMMs, that allows observations to be represented as arbitrary overlapping features (such as word, capitalization, formatting, partofspeech), and defines the conditional probability of state sequences given observation sequences. It does this by using the maximum entropy framework to fit a set of exponential models that represent the probability of a state given an observation and the previous state. We present positive experimental results on the segmentation of FAQ’s. 1.
Algorithms for Sequential Decision Making
, 1996
"... Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of states, "do" is one ..."
Abstract

Cited by 175 (8 self)
 Add to MetaCart
Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of states, "do" is one of a finite set of actions, "should" is maximize a longrun measure of reward, and "I" is an automated planning or learning system (agent). In particular,
Hidden Markov processes
 IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite ..."
Abstract

Cited by 170 (3 self)
 Add to MetaCart
Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finitestate finitealphabet HMPs was expanded to HMPs with finite as well as continuous state spaces and a general alphabet. In particular, statistical properties and ergodic theorems for relative entropy densities of HMPs were developed. Consistency and asymptotic normality of the maximumlikelihood (ML) parameter estimator were proved under some mild conditions. Similar results were established for switching autoregressive processes. These processes generalize HMPs. New algorithms were developed for estimating the state, parameter, and order of an HMP, for universal coding and classification of HMPs, and for universal decoding of hidden Markov channels. These and other related topics are reviewed in this paper. Index Terms—Baum–Petrie algorithm, entropy ergodic theorems, finitestate channels, hidden Markov models, identifiability, Kalman filter, maximumlikelihood (ML) estimation, order estimation, recursive parameter estimation, switching autoregressive processes, Ziv inequality. I.
Speech Recognition by Composition of Weighted Finite Automata
 FINITESTATE LANGUAGE PROCESSING
, 1996
"... We present a general framework based on weighted finite automata and weighted finitestate transducers for describing and implementing speech recognizers. The framework allows us to represent uniformly the information sources and data structures used in recognition, including contextdependent u ..."
Abstract

Cited by 124 (12 self)
 Add to MetaCart
We present a general framework based on weighted finite automata and weighted finitestate transducers for describing and implementing speech recognizers. The framework allows us to represent uniformly the information sources and data structures used in recognition, including contextdependent units, pronunciation dictionaries, language models and lattices. Furthermore, general but efficient algorithms can used for combining information sources in actual recognizers and for optimizing their application. In particular, a single composition algorithm is used both to combine in advance information sources such as language models and dictionaries, and to combine acoustic observations and information sources dynamically during recognition.
A Survey of Computational Complexity Results in Systems and Control
, 2000
"... The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fi ..."
Abstract

Cited by 116 (21 self)
 Add to MetaCart
The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial time algorithms, NPcompleteness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, timevarying linear systems, nonlinear and hybrid systems, and stochastic optimal control.
It Usually Works: The Temporal Logic of Stochastic Systems
, 1995
"... . In this paper the branching time logic pCTL is defined. pCTL expresses quantitative bounds on the probabilities of correct behavior; it can be interpreted over discrete Markov processes. A bisimulation relation is defined on finite Markov processes, and shown to be sound and complete with re ..."
Abstract

Cited by 87 (0 self)
 Add to MetaCart
. In this paper the branching time logic pCTL is defined. pCTL expresses quantitative bounds on the probabilities of correct behavior; it can be interpreted over discrete Markov processes. A bisimulation relation is defined on finite Markov processes, and shown to be sound and complete with respect to pCTL . We extend the universe of models to generalized Markov processes in order to support notions of refinement, abstraction, and parametrization. Model checking pCTL over generalized Markov processes is shown to be elementary by a reduction to RCF. We conclude by describing practical and theoretical avenues for further work. 1 Introduction The study of formal methods to specify and prove properties of finite state systems has been the subject of intense research. Various methodologies have been proposed; some of the most fruitful, in both theory and practise, have been based on temporal logic [10]. Properties are expressed using formulae which are built out of operators ...
On the Undecidability of Probabilistic Planning and InfiniteHorizon Partially Observable Markov Decision Problems
, 1999
"... We investigate the computability of problems in probabilistic planning and partially observable infinitehorizon Markov decision processes. The undecidability of the stringexistence problem for probabilistic finite automata is adapted to show that the following problem of plan existence in pr ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
We investigate the computability of problems in probabilistic planning and partially observable infinitehorizon Markov decision processes. The undecidability of the stringexistence problem for probabilistic finite automata is adapted to show that the following problem of plan existence in probabilistic planning is undecidable: given a probabilistic planning problem, determine whether there exists a plan with success probability exceeding a desirable threshold. Analogous policyexistence problems for partially observable infinitehorizon Markov decision processes under discounted and undiscounted total reward models, averagereward models, and stateavoidance models are all shown to be undecidable. The results apply to corresponding approximation problems as well. 1 Introduction We show that problems in probabilistic planning (Kushmerick, Hanks, & Weld 1995; Boutilier, Dean, & Hanks 1999) and infinitehorizon partially observable Markov decision processes (POMDPs) (L...
Efficient Training of Conditional Random Fields
, 2002
"... This thesis explores a number of parameter estimation techniques for conditional random fields, a recently introduced probabilistic model for labelling and segmenting sequential data. Theoretical and practical disadvantages of the training techniques reported in current literature on CRFs are discus ..."
Abstract

Cited by 54 (2 self)
 Add to MetaCart
This thesis explores a number of parameter estimation techniques for conditional random fields, a recently introduced probabilistic model for labelling and segmenting sequential data. Theoretical and practical disadvantages of the training techniques reported in current literature on CRFs are discussed. We hypothesise that general numerical optimisation techniques result in improved performance over iterative scaling algorithms for training CRFs. Experiments run on a a subset of a wellknown text chunking data set confirm that this is indeed the case. This is a highly promising result, indicating that such parameter estimation techniques make CRFs a practical and efficient choice for labelling sequential data, as well as a theoretically sound and principled probabilistic framework.
On the complexity of space bounded interactive proofs
 In 30th Annual Symposium on Foundations of Computer Science
, 1989
"... Some of the most exciting developments in complexity theory in recent years concern the complexity of interactive proof systems, defined by Goldwasser, Micali and Rackoff (1985) and independently by Babai (1985). In this paper, we survey results on the complexity of space bounded interactive proof s ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
Some of the most exciting developments in complexity theory in recent years concern the complexity of interactive proof systems, defined by Goldwasser, Micali and Rackoff (1985) and independently by Babai (1985). In this paper, we survey results on the complexity of space bounded interactive proof systems