Results 1  10
of
33
The computational Complexity of Knot and Link Problems
 J. ACM
, 1999
"... We consider the problem of deciding whether a polygonal knot in 3dimensional Euclidean space is unknotted, capable of being continuously deformed without selfintersection so that it lies in a plane. We show that this problem, unknotting problem is in NP. We also consider the problem, unknotting pr ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
We consider the problem of deciding whether a polygonal knot in 3dimensional Euclidean space is unknotted, capable of being continuously deformed without selfintersection so that it lies in a plane. We show that this problem, unknotting problem is in NP. We also consider the problem, unknotting problem of determining whether two or more such polygons can be split, or continuously deformed without selfintersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in PSPACE. We also give exponential worstcase running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.
Modular Data Structure Verification
 EECS DEPARTMENT, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
, 2007
"... This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java ..."
Abstract

Cited by 36 (21 self)
 Add to MetaCart
This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java programs with dynamically allocated data structures. Developers write Jahob specifications in classical higherorder logic (HOL); Jahob reduces the verification problem to deciding the validity of HOL formulas. I present a new method for proving HOL formulas by combining automated reasoning techniques. My method consists of 1) splitting formulas into individual HOL conjuncts, 2) soundly approximating each HOL conjunct with a formula in a more tractable fragment and 3) proving the resulting approximation using a decision procedure or a theorem prover. I present three concrete logics; for each logic I show how to use it to approximate HOL formulas, and how to decide the validity of formulas in this logic. First, I present an approximation of HOL based on a translation to firstorder logic, which enables the use of existing resolutionbased theorem provers. Second, I present an approximation of HOL based on field constraint analysis, a new technique that enables
Towards efficient satisfiability checking for boolean algebra with presburger arithmetic
 In CADE21
, 2007
"... 1 Introduction This paper considers the satisfiability problem for a logic that allows reasoning about sets and their cardinalities. We call this logic quantifierfree Boolean Algebra with Presburger Arithmetic and denote it QFBAPA. Our motivationfor QFBAPA is proving the validity of formulas arisi ..."
Abstract

Cited by 28 (17 self)
 Add to MetaCart
1 Introduction This paper considers the satisfiability problem for a logic that allows reasoning about sets and their cardinalities. We call this logic quantifierfree Boolean Algebra with Presburger Arithmetic and denote it QFBAPA. Our motivationfor QFBAPA is proving the validity of formulas arising from program verification [12,13,14], but
Gomory Integer Programs
, 2001
"... The set of all group relaxations of an integer program contains certain special members called Gomory relaxations. A family of integer programs with a fixed coefficient matrix and cost vector but varying right hand sides is a Gomory family if every program in the family can be solved by one of its G ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
The set of all group relaxations of an integer program contains certain special members called Gomory relaxations. A family of integer programs with a fixed coefficient matrix and cost vector but varying right hand sides is a Gomory family if every program in the family can be solved by one of its Gomory relaxations. In this paper, we characterize Gomory families. Every TDI system gives a Gomory family, and we construct Gomory families from matrices whose columns form a Hilbert basis for the cone they generate. The existence of Gomory families is related to the Hilbert covering problems that arose from the conjectures of Sebö. Connections to commutative algebra are outlined at the end.
A counterexample to an integer analogue of Carathéodory's theorem
 J. Reine Angew. Math
, 1998
"... For n>5 we provide a counterexample to the conjecture that every integral vector of a ndimensional integral polyhedral pointed cone C can be written as a nonnegative integral combination of at most n elements of the Hilbert basis of C. In fact, we show that in general at least 7n/6 elements of the ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
For n>5 we provide a counterexample to the conjecture that every integral vector of a ndimensional integral polyhedral pointed cone C can be written as a nonnegative integral combination of at most n elements of the Hilbert basis of C. In fact, we show that in general at least 7n/6 elements of the Hilbert basis are needed.
On crepant resolutions of 2parameter series of Gorenstein cyclic quotient singularities
 Results Math
, 1998
"... An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C r /G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quot ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C r /G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and sufficient conditions under which 2parameter series of Gorenstein cyclic quotient singularities have torusequivariant resolutions of this specific sort in all dimensions. 1.
The computational complexity of knot genus and spanning area
 electronic), arXiv: math.GT/0205057. MR MR2219001
"... Abstract. We show that the problem of deciding whether a polygonal knot in a closed threedimensional manifold bounds a surface of genus at most g is NPcomplete. We also show that the problem of deciding whether a curve in a PL manifold bounds a surface of area less than a given constant C is NPha ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Abstract. We show that the problem of deciding whether a polygonal knot in a closed threedimensional manifold bounds a surface of genus at most g is NPcomplete. We also show that the problem of deciding whether a curve in a PL manifold bounds a surface of area less than a given constant C is NPhard. 1.
Integral decomposition of polyhedra and some applications in mixed integer programming
 MATHEMATICAL PROGRAMMING SERIES B
, 2000
"... This paper addresses the question of decomposing an infinite family of rational polyhedra in an integer fashion. It is shown that there is a finite subset of this family that generates the entire family. Moreover, an integer analogue of Carathéodory’s theorem carries over to this general setting. T ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
This paper addresses the question of decomposing an infinite family of rational polyhedra in an integer fashion. It is shown that there is a finite subset of this family that generates the entire family. Moreover, an integer analogue of Carathéodory’s theorem carries over to this general setting. The integer decomposition of a family of polyhedra has different applications in integer and mixed integer programming. Three of them will be illuminated.