Results 1 
3 of
3
Rational Term Rewriting
, 1998
"... . Rational terms (possibly infinite terms with finitely many subterms) can be represented in a finite way via terms, that is, terms over a signature extended with selfinstantiation operators. For example, f ! = f(f(f(: : :))) can be represented as x :f(x) (or also as x :f(f(x)), f(x :f(x)), ..."
Abstract

Cited by 21 (12 self)
 Add to MetaCart
. Rational terms (possibly infinite terms with finitely many subterms) can be represented in a finite way via terms, that is, terms over a signature extended with selfinstantiation operators. For example, f ! = f(f(f(: : :))) can be represented as x :f(x) (or also as x :f(f(x)), f(x :f(x)), . . . ). Now, if we reduce a term t to s via a rewriting rule using standard notions of the theory of Term Rewriting Systems, how are the rational terms corresponding to t and to s related? We answer to this question in a satisfactory way, resorting to the definition of infinite parallel rewriting proposed in [7]. We also provide a simple, algebraic description of term rewriting through a variation of Meseguer's Rewriting Logic formalism. 1 Introduction Rational terms are possibly infinite terms with a finite set of subterms. They show up in a natural way in Theoretical Computer Science whenever some finite cyclic structures are of concern (for example data flow diagrams, cyclic te...
(Cyclic) Term Graph Rewriting is adequate for Rational Parallel Term Rewriting
 CGH
, 1997
"... Acyclic Term Graphs are able to represent terms with sharing, and the relationship between Term Graph Rewriting (TGR) and Term Rewrtiting (TR) is now well understood [BvEG + 87, HP91]. During the last years, some researchers considered the extension of TGR to possibly cyclic term graphs, which ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
Acyclic Term Graphs are able to represent terms with sharing, and the relationship between Term Graph Rewriting (TGR) and Term Rewrtiting (TR) is now well understood [BvEG + 87, HP91]. During the last years, some researchers considered the extension of TGR to possibly cyclic term graphs, which can represent possibly infinite, rational terms. In [KKSdV94] the authors formalize the classical relationship between TGR and TR as an "adequate mapping" between rewriting systems, and extend it by proving that unraveling is an adequate mapping from cyclic TGR to rational, infinitary term rewriting: In fact, a single graph reduction may correspond to an infinite sequence of term reductions. Using the same notions, we propose a different adequacy result, showing that unraveling is an adequate mapping from cyclic TGR to rational parallel term rewriting, where at each reduction infinitely many rules can be applied in parallel. We also argue that our adequacy result is more natural...
Transfinite Reductions in Orthogonal Term Rewriting Systems (Extended abstract)
"... Abstract. Strongly convergent reduction is the fundamental notion of reduction in infinitary orthogonal term rewriting systems (OTRSs). For these we prove the Transfinite Parallel Moves Lemma and the Compressing Lemma. Strongness is necessary as shown by counterexamples. Normal forms,,which we allow ..."
Abstract
 Add to MetaCart
Abstract. Strongly convergent reduction is the fundamental notion of reduction in infinitary orthogonal term rewriting systems (OTRSs). For these we prove the Transfinite Parallel Moves Lemma and the Compressing Lemma. Strongness is necessary as shown by counterexamples. Normal forms,,which we allow to be infinite, are unique, in contrast to conormal forms. Strongly converging fair reductions result in normal forms. In general OTRSs the infinite ChurchRosser Property fails for strongly converging reductions. However for B6hm reduction (as in Lambda Calculus, subterms without head normal forms may be replaced by _L) the infinite ChurchRosser property does hold. The infinite ChurchRosser Property for nonunifiable OTRSs follows, The topterminating OTRSs of Dershowitz c.s. are examples of nonunifiable OTRSs.