Results 1 
4 of
4
A Column Generation Approach For Graph Coloring
 INFORMS Journal on Computing
, 1995
"... We present a method for solving the independent set formulation of the graph coloring problem (where there is one variable for each independent set in the graph). We use a column generation method for implicit optimization of the linear program at each node of the branchandbound tree. This approac ..."
Abstract

Cited by 71 (2 self)
 Add to MetaCart
We present a method for solving the independent set formulation of the graph coloring problem (where there is one variable for each independent set in the graph). We use a column generation method for implicit optimization of the linear program at each node of the branchandbound tree. This approach, while requiring the solution of a difficult subproblem as well as needing sophisticated branching rules, solves small to moderate size problems quickly. We have also implemented an exact graph coloring algorithm based on DSATUR for comparison. Implementation details and computational experience are presented. 1 INTRODUCTION The graph coloring problem is one of the most useful models in graph theory. This problem has been used to solve problems in school timetabling [10], computer register allocation [7, 8], electronic bandwidth allocation [11], and many other areas. These applications suggest that effective algorithms for solving the graph coloring problem would be of great importance. D...
CABOB: A Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions
, 2005
"... Combinatorial auctions where bidders can bid on bundles of items can lead to more economically efficient allocations, but determining the winners is NPcomplete and inapproximable. We present CABOB, a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and ..."
Abstract

Cited by 48 (8 self)
 Add to MetaCart
Combinatorial auctions where bidders can bid on bundles of items can lead to more economically efficient allocations, but determining the winners is NPcomplete and inapproximable. We present CABOB, a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and lower bounding (also across components), elaborate and dynamically chosen bidordering heuristics, and a host of structural observations. CABOB attempts to capture structure in any instance without making assumptions about the instance distribution. Experiments against the fastest prior algorithm, CPLEX 8.0, show that CABOB is often faster, seldom drastically slower, and in many cases drastically faster—especially in cases with structure. CABOB’s search runs in linear space and has significantly better anytime performance than CPLEX. We also uncover interesting aspects of the problem itself. First, problems with short bids, which were hard for the first generation of specialized algorithms, are easy. Second, almost all of the CATS distributions are easy, and the run time is virtually unaffected by the number of goods. Third, we test several random restart strategies, showing that they do not help on this problem—the runtime distribution does not have a heavy tail.
APPROXIMATING MAXIMUM STABLE SET AND MINIMUM GRAPH COLORING PROBLEMS WITH THE POSITIVE SEMIDEFINITE RELAXATION
"... We compute approximate solutions to the maximum stable set problem and the minimum graph coloring problem using a positive semidefinite relaxation. The positive semidefinite programs are solved using an implementation of the dual scaling algorithm that takes advantage of the sparsity inherent in m ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
We compute approximate solutions to the maximum stable set problem and the minimum graph coloring problem using a positive semidefinite relaxation. The positive semidefinite programs are solved using an implementation of the dual scaling algorithm that takes advantage of the sparsity inherent in most graphs and the structure inherent in the problem formulation. From the solution to the relaxation, we apply a randomized algorithm to find approximate maximum stable sets and a modification of a popular heuristic to find graph colorings. We obtained high quality answers for graphs with over 1000 vertices and almost 7000 edges.
An Interior Point Approach to the Maximum Independent Set Problem in Dense Random Graphs
 In Proceedings of the XIII Latin American Conference on Informatics
, 1989
"... We present an interior point approach to the zeroone integer programming feasibility problem based on the minimization of an appropriate potential function. Given a polytope defined by a set of linear inequalities, this procedure generates a sequence of strict interior points of this polytope, such ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
We present an interior point approach to the zeroone integer programming feasibility problem based on the minimization of an appropriate potential function. Given a polytope defined by a set of linear inequalities, this procedure generates a sequence of strict interior points of this polytope, such that each consecutive point reduces the value of the potential function. An integer solution (not necessarily feasible) is generated at each iteration by a rounding scheme. The direction used to determine the new iterate is computed by solving a nonconvex quadratic program on an ellipsoid. We illustrate the approach by considering a class of difficult NPcomplete problems: finding a maximum independent set of a dense random graph. Some implementation details are discussed and preliminary computational results are presented. We solve several large independent set problems in graphs having up to 1000 vertices and over 250,000 edges. Key words: Integer programming, interior point method, maxim...