Results 1  10
of
616
Correcting sample selection bias by unlabeled data
"... We consider the scenario where training and test data are drawn from different distributions, commonly referred to as sample selection bias. Most algorithms for this setting try to first recover sampling distributions and then make appropriate corrections based on the distribution estimate. We prese ..."
Abstract

Cited by 208 (11 self)
 Add to MetaCart
(Show Context)
We consider the scenario where training and test data are drawn from different distributions, commonly referred to as sample selection bias. Most algorithms for this setting try to first recover sampling distributions and then make appropriate corrections based on the distribution estimate. We present a nonparametric method which directly produces resampling weights without distribution estimation. Our method works by matching distributions between training and testing sets in feature space. Experimental results demonstrate that our method works well in practice.
A support vector method for optimizing average precision
 In SIGIR ’07
, 2007
"... Machine learning is commonly used to improve ranked retrieval systems. Due to computational difficulties, few learning techniques have been developed to directly optimize for mean average precision (MAP), despite its widespread use in evaluating such systems. Existing approaches optimizing MAP ei ..."
Abstract

Cited by 195 (7 self)
 Add to MetaCart
(Show Context)
Machine learning is commonly used to improve ranked retrieval systems. Due to computational difficulties, few learning techniques have been developed to directly optimize for mean average precision (MAP), despite its widespread use in evaluating such systems. Existing approaches optimizing MAP either do not find a globally optimal solution, or are computationally expensive. In contrast, we present a general SVM learning algorithm that efficiently finds a globally optimal solution to a straightforward relaxation of MAP. We evaluate our approach using the TREC 9 and TREC 10 Web Track corpora (WT10g), comparing against SVMs optimized for accuracy and ROCArea. In most cases we show our method to produce statistically significant improvements in MAP scores.
Maximum margin planning
 IN PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING (ICML’06
, 2006
"... Imitation learning of sequential, goaldirected behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in ..."
Abstract

Cited by 145 (28 self)
 Add to MetaCart
(Show Context)
Imitation learning of sequential, goaldirected behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in an MDP with these cost mimics the expert’s behavior. Further, we demonstrate a simple, provably efficient approach to structured maximum margin learning, based on the subgradient method, that leverages existing fast algorithms for inference. Although the technique is general, it is particularly relevant in problems where A * and dynamic programming approaches make learning policies tractable in problems beyond the limitations of a QP formulation. We demonstrate our approach applied to route planning for outdoor mobile robots, where the behavior a designer wishes a planner to execute is often clear, while specifying cost functions that engender this behavior is a much more difficult task.
Recovering the Spatial Layout of Cluttered Rooms
"... In this paper, we consider the problem of recovering the spatial layout of indoor scenes from monocular images. The presence of clutter is a major problem for existing singleview 3D reconstruction algorithms, most of which rely on finding the groundwall boundary. In most rooms, this boundary is par ..."
Abstract

Cited by 114 (7 self)
 Add to MetaCart
(Show Context)
In this paper, we consider the problem of recovering the spatial layout of indoor scenes from monocular images. The presence of clutter is a major problem for existing singleview 3D reconstruction algorithms, most of which rely on finding the groundwall boundary. In most rooms, this boundary is partially or entirely occluded. We gain robustness to clutter by modeling the global room space with a parameteric 3D “box ” and by iteratively localizing clutter and refitting the box. To fit the box, we introduce a structured learning algorithm that chooses the set of parameters to minimize error, based on global perspective cues. On a dataset of 308 images, we demonstrate the ability of our algorithm to recover spatial layout in cluttered rooms and show several examples of estimated free space. 1.
Struck: Structured Output Tracking with Kernels
"... Adaptive trackingbydetection methods are widely used in computer vision for tracking arbitrary objects. Current approaches treat the tracking problem as a classification task and use online learning techniques to update the object model. However, for these updates to happen one needs to convert th ..."
Abstract

Cited by 111 (4 self)
 Add to MetaCart
(Show Context)
Adaptive trackingbydetection methods are widely used in computer vision for tracking arbitrary objects. Current approaches treat the tracking problem as a classification task and use online learning techniques to update the object model. However, for these updates to happen one needs to convert the estimated object position into a set of labelled training examples, and it is not clear how best to perform this intermediate step. Furthermore, the objective for the classifier (label prediction) is not explicitly coupled to the objective for the tracker (accurate estimation of object position). In this paper, we present a framework for adaptive visual object tracking based on structured output prediction. By explicitly allowing the output space to express the needs of the tracker, we are able to avoid the need for an intermediate classification step. Our method uses a kernelized structured output support vector machine (SVM), which is learned online to provide adaptive tracking. To allow for realtime application, we introduce a budgeting mechanism which prevents the unbounded growth in the number of support vectors which would otherwise occur during tracking. Experimentally, we show that our algorithm is able to outperform stateoftheart trackers on various benchmark videos. Additionally, we show that we can easily incorporate additional features and kernels into our framework, which results in increased performance. 1.
Fast approximate energy minimization with label costs
, 2010
"... The αexpansion algorithm [7] has had a significant impact in computer vision due to its generality, effectiveness, and speed. Thus far it can only minimize energies that involve unary, pairwise, and specialized higherorder terms. Our main contribution is to extend αexpansion so that it can simult ..."
Abstract

Cited by 109 (9 self)
 Add to MetaCart
(Show Context)
The αexpansion algorithm [7] has had a significant impact in computer vision due to its generality, effectiveness, and speed. Thus far it can only minimize energies that involve unary, pairwise, and specialized higherorder terms. Our main contribution is to extend αexpansion so that it can simultaneously optimize “label costs ” as well. An energy with label costs can penalize a solution based on the set of labels that appear in it. The simplest special case is to penalize the number of labels in the solution. Our energy is quite general, and we prove optimality bounds for our algorithm. A natural application of label costs is multimodel fitting, and we demonstrate several such applications in vision: homography detection, motion segmentation, and unsupervised image segmentation. Our C++/MATLAB implementation is publicly available.
Learning CRFs using Graph Cuts
"... Abstract. Many computer vision problems are naturally formulated as random fields, specifically MRFs or CRFs. The introduction of graph cuts has enabled efficient and optimal inference in associative random fields, greatly advancing applications such as segmentation, stereo reconstruction and many o ..."
Abstract

Cited by 104 (8 self)
 Add to MetaCart
(Show Context)
Abstract. Many computer vision problems are naturally formulated as random fields, specifically MRFs or CRFs. The introduction of graph cuts has enabled efficient and optimal inference in associative random fields, greatly advancing applications such as segmentation, stereo reconstruction and many others. However, while fast inference is now widespread, parameter learning in random fields has remained an intractable problem. This paper shows how to apply fast inference algorithms, in particular graph cuts, to learn parameters of random fields with similar efficiency. We find optimal parameter values under standard regularized objective functions that ensure good generalization. Our algorithm enables learning of many parameters in reasonable time, and we explore further speedup techniques. We also discuss extensions to nonassociative and multiclass problems. We evaluate the method on image segmentation and geometry recognition. 1
A Review of Kernel Methods in Machine Learning
, 2006
"... We review recent methods for learning with positive definite kernels. All these methods formulate learning and estimation problems as linear tasks in a reproducing kernel Hilbert space (RKHS) associated with a kernel. We cover a wide range of methods, ranging from simple classifiers to sophisticate ..."
Abstract

Cited by 95 (4 self)
 Add to MetaCart
(Show Context)
We review recent methods for learning with positive definite kernels. All these methods formulate learning and estimation problems as linear tasks in a reproducing kernel Hilbert space (RKHS) associated with a kernel. We cover a wide range of methods, ranging from simple classifiers to sophisticated methods for estimation with structured data.
Information extraction
 FnT Databases
"... The automatic extraction of information from unstructured sources has opened up new avenues for querying, organizing, and analyzing data by drawing upon the clean semantics of structured databases and the abundance of unstructured data. The field of information extraction has its genesis in the natu ..."
Abstract

Cited by 94 (4 self)
 Add to MetaCart
(Show Context)
The automatic extraction of information from unstructured sources has opened up new avenues for querying, organizing, and analyzing data by drawing upon the clean semantics of structured databases and the abundance of unstructured data. The field of information extraction has its genesis in the natural language processing community where the primary impetus came from competitions centered around the recognition of named entities like people names and organization from news articles. As society became more data oriented with easy online access to both structured and unstructured data, new applications of structure extraction came around. Now, there is interest in converting our personal desktops to structured databases, the knowledge in scientific publications to structured records, and harnessing the Internet for structured fact finding queries. Consequently, there are many different communities of researchers bringing in techniques from machine learning, databases, information retrieval, and computational linguistics for various aspects of the information extraction problem. This review is a survey of information extraction research of over two decades from these diverse communities. We create a taxonomy of the field along various dimensions derived from the nature of theextraction task, the techniques used for extraction, the variety of input resources exploited, and the type of output produced. We elaborate on rulebased and statistical methods for entity and relationship extraction. In each case we highlight the different kinds of models for capturing the diversity of clues driving the recognition process and the algorithms for training and efficiently deploying the models. We survey techniques for optimizing the various steps in an information extraction pipeline, adapting to dynamic data, integrating with existing entities and handling uncertainty in the extraction process. 1
(Online) Subgradient Methods for Structured Prediction
"... Promising approaches to structured learning problems have recently been developed in the maximum margin framework. Unfortunately, algorithms that are computationally and memory efficient enough to solve large scale problems have lagged behind. We propose using simple subgradientbased techniques for ..."
Abstract

Cited by 89 (15 self)
 Add to MetaCart
(Show Context)
Promising approaches to structured learning problems have recently been developed in the maximum margin framework. Unfortunately, algorithms that are computationally and memory efficient enough to solve large scale problems have lagged behind. We propose using simple subgradientbased techniques for optimizing a regularized risk formulation of these problems in both online and batch settings, and analyze the theoretical convergence, generalization, and robustness properties of the resulting techniques. These algorithms are are simple, memory efficient, fast to converge, and have small regret in the online setting. We also investigate a novel convex regression formulation of structured learning. Finally, we demonstrate the benefits of the subgradient approach on three structured prediction problems. 1