Results 1  10
of
122
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 490 (14 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 447 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Learning with local and global consistency
 Advances in Neural Information Processing Systems 16
, 2004
"... We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic stru ..."
Abstract

Cited by 433 (20 self)
 Add to MetaCart
We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data. 1
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract

Cited by 286 (15 self)
 Add to MetaCart
Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for future exploration of Laplacianbased methods in a statistical setting.
Transductive Learning via Spectral Graph Partitioning
 In ICML
, 2003
"... We present a new method for transductive learning, which can be seen as a transductive version of the k nearestneighbor classifier. ..."
Abstract

Cited by 195 (0 self)
 Add to MetaCart
We present a new method for transductive learning, which can be seen as a transductive version of the k nearestneighbor classifier.
SemiSupervised Classification by Low Density Separation
, 2005
"... We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transd ..."
Abstract

Cited by 120 (9 self)
 Add to MetaCart
We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transductive SVM objective function, which places the decision boundary in low density regions, by gradient descent; 3. combining the first two to make maximum use of the cluster assumption. We compare with state of the art algorithms and demonstrate superior accuracy for the latter two methods.
Kernel Conditional Random Fields: Representation and Clique Selection
 in ICML
, 2004
"... Kernel conditional random fields (KCRFs) are introduced as a framework for discriminative modeling of graphstructured data. A representer theorem for conditional graphical models is given which shows how kernel conditional random fields arise from risk minimization procedures defined using Me ..."
Abstract

Cited by 73 (4 self)
 Add to MetaCart
Kernel conditional random fields (KCRFs) are introduced as a framework for discriminative modeling of graphstructured data. A representer theorem for conditional graphical models is given which shows how kernel conditional random fields arise from risk minimization procedures defined using Mercer kernels on labeled graphs. A procedure for greedily selecting cliques in the dual representation is then proposed, which allows sparse representations. By incorporating kernels and implicit feature spaces into conditional graphical models, the framework enables semisupervised learning algorithms for structured data through the use of graph kernels.
Active Learning Using Preclustering
 IN PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 2004
"... The paper is concerned with twoclass active learning. While the common approach for collecting data in active learning is to select samples close to the classification boundary, better performance can be achieved by taking into account the prior data distribution. The main contribution of the ..."
Abstract

Cited by 64 (2 self)
 Add to MetaCart
The paper is concerned with twoclass active learning. While the common approach for collecting data in active learning is to select samples close to the classification boundary, better performance can be achieved by taking into account the prior data distribution. The main contribution of the paper is a formal framework that incorporates clustering into active learning. The algorithm first constructs a classifier on the set of the cluster representatives, and then propagates the classification decision to the other samples via a local noise model. The proposed model allows to select the most representative samples as well as to avoid repeatedly labeling samples in the same cluster. During the active learning process, the clustering is adjusted using the coarsetofine strategy in order to balance between the advantage of large clusters and the accuracy of the data representation. The results of experiments in image databases show a better performance of our algorithm compared to the current methods.
Semisupervised protein classification using cluster kernels
 Advances in Neural Information Processing Systems 16
, 2004
"... kernels ..."
Large scale transductive svms
 JMLR
"... We show how the ConcaveConvex Procedure can be applied to Transductive SVMs, which traditionally require solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach. Software is a ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
We show how the ConcaveConvex Procedure can be applied to Transductive SVMs, which traditionally require solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach. Software is available at