Results 1  10
of
181
Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations
 IN STACS
, 2005
"... We define Recursive Markov Chains (RMCs), a class of finitely presented denumerable Markov chains, and we study algorithms for their analysis. Informally, an RMC consists of a collection of finitestate Markov chains with the ability to invoke each other in a potentially recursive manner. RMCs offer ..."
Abstract

Cited by 89 (12 self)
 Add to MetaCart
(Show Context)
We define Recursive Markov Chains (RMCs), a class of finitely presented denumerable Markov chains, and we study algorithms for their analysis. Informally, an RMC consists of a collection of finitestate Markov chains with the ability to invoke each other in a potentially recursive manner. RMCs offer a natural abstract model for probabilistic programs with procedures. They generalize, in a precise sense, a number of well studied stochastic models, including Stochastic ContextFree Grammars (SCFG) and MultiType Branching Processes (MTBP). We focus on algorithms for reachability and termination analysis for RMCs: what is the probability that an RMC started from a given state reaches another target state, or that it terminates? These probabilities are in general irrational, and they arise as (least) fixed point solutions to certain (monotone) systems of nonlinear equations associated with RMCs. We address both the qualitative problem of determining whether the probabilities are 0, 1 or inbetween, and
On the complexity of numerical analysis
 IN PROC. 21ST ANN. IEEE CONF. ON COMPUTATIONAL COMPLEXITY (CCC ’06
, 2006
"... We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The BlumShubSmale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation, ” which captures an aspect of doing numerical computation ..."
Abstract

Cited by 70 (5 self)
 Add to MetaCart
(Show Context)
We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The BlumShubSmale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation, ” which captures an aspect of doing numerical computation in floating point, similar to the “long exponent model ” that has been studied in the numerical computing community. We show that both of these approaches hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a divisionfree straightline program producing an integer N, decide whether N> 0. • In the BlumShubSmale model, polynomial time computation over the reals (on discrete inputs) is polynomialtime equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomialtime equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE. In the course of developing the context for our results on arithmetic circuits, we present some new observations on the complexity of ACIT: the Arithmetic Circuit Identity Testing problem. In particular, we show that if n! is not ultimately easy, then ACIT has subexponential complexity.
MultiLinear Formulas for Permanent and Determinant are of SuperPolynomial Size
 Proceeding of the 36th STOC
, 2003
"... An arithmetic formula is multilinear if the polynomial computed by each of its subformulas is multilinear. We prove that any multilinear arithmetic formula for the permanent or the determinant of an n n matrix is of size superpolynomial in n. ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
(Show Context)
An arithmetic formula is multilinear if the polynomial computed by each of its subformulas is multilinear. We prove that any multilinear arithmetic formula for the permanent or the determinant of an n n matrix is of size superpolynomial in n.
Arithmetic Circuits: a survey of recent results and open questions
"... A large class of problems in symbolic computation can be expressed as the task of computing some polynomials; and arithmetic circuits form the most standard model for studying the complexity of such computations. This algebraic model of computation attracted a large amount of research in the last fi ..."
Abstract

Cited by 63 (5 self)
 Add to MetaCart
A large class of problems in symbolic computation can be expressed as the task of computing some polynomials; and arithmetic circuits form the most standard model for studying the complexity of such computations. This algebraic model of computation attracted a large amount of research in the last five decades, partially due to its simplicity and elegance. Being a more structured model than Boolean circuits, one could hope that the fundamental problems of theoretical computer science, such as separating P from NP, will be easier to solve for arithmetic circuits. However, in spite of the appearing simplicity and the vast amount of mathematical tools available, no major breakthrough has been seen. In fact, all the fundamental questions are still open for this model as well. Nevertheless, there has been a lot of progress in the area and beautiful results have been found, some in the last few years. As examples we mention the connection between polynomial identity testing and lower bounds of Kabanets and Impagliazzo, the lower bounds of Raz for multilinear formulas, and two new approaches for proving lower bounds: Geometric Complexity Theory and Elusive Functions. The goal of this monograph is to survey the field of arithmetic circuit complexity, focusing mainly on what we find to be the most interesting and accessible research directions. We aim to cover the main results and techniques, with an emphasis on works from the last two decades. In particular, we
On the Complexity of Nash Equilibria and Other Fixed Points (Extended Abstract)
 IN PROC. FOCS
, 2007
"... We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 ..."
Abstract

Cited by 61 (7 self)
 Add to MetaCart
(Show Context)
We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 or more players, and given ɛ> 0, compute an approximation within ɛ of some (actual) Nash equilibrium. We show that approximation of an actual Nash Equilibrium, even to within any nontrivial constant additive factor ɛ < 1/2 in just one desired coordinate, is at least as hard as the long standing squareroot sum problem, as well as a more general arithmetic circuit decision problem that characterizes Ptime in a unitcost model of computation with arbitrary precision rational arithmetic; thus placing the approximation problem in P, or even NP, would resolve major open problems in the complexity of numerical computation. We show similar results for market equilibria: it is hard to estimate with any nontrivial accuracy the equilibrium prices in an exchange economy with a unique equilibrium, where the economy is given by explicit algebraic formulas for the excess demand functions. We define a class, FIXP, which captures search problems that can be cast as fixed point
Deterministic polynomial identity testing in non commutative models
 Computational Complexity
, 2004
"... We give a deterministic polynomial time algorithm for polynomial identity testing in the following two cases: 1. Non Commutative Arithmetic Formulas: The algorithm gets as an input an arithmetic formula in the noncommuting variables x1,..., xn and determines whether or not the output of the formula ..."
Abstract

Cited by 59 (10 self)
 Add to MetaCart
(Show Context)
We give a deterministic polynomial time algorithm for polynomial identity testing in the following two cases: 1. Non Commutative Arithmetic Formulas: The algorithm gets as an input an arithmetic formula in the noncommuting variables x1,..., xn and determines whether or not the output of the formula is identically 0 (as a formal expression). 2. Pure Arithmetic Circuits: The algorithm gets as an input a pure setmultilinear arithmetic circuit (as defined by Nisan and Wigderson) in the variables x1,..., xn and determines whether or not the output of the circuit is identically 0 (as a formal expression). One application is a deterministic polynomial time identity testing for setmultilinear arithmetic circuits of depth 3. We also give a deterministic polynomial time identity testing algorithm for noncommutative algebraic branching programs as defined by Nisan. Finally, we observe an exponential lower bound for the size of pure setmultilinear arithmetic circuits for the permanent and for the determinant. (Only lower bounds for the depth of pure circuits were previously known). 1
Locally Decodable Codes with 2 queries and Polynomial Identity Testing for depth 3 circuits
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY, REPORT NO. 44 (2005)
, 2005
"... In this work we study two, seemingly unrelated, notions. Locally Decodable Codes (LDCs) are codes that allow the recovery of each message bit from a constant number of entries of the codeword. Polynomial Identity Testing (PIT) is one of the fundamental problems of algebraic complexity: we are given ..."
Abstract

Cited by 52 (13 self)
 Add to MetaCart
(Show Context)
In this work we study two, seemingly unrelated, notions. Locally Decodable Codes (LDCs) are codes that allow the recovery of each message bit from a constant number of entries of the codeword. Polynomial Identity Testing (PIT) is one of the fundamental problems of algebraic complexity: we are given a circuit computing a multivariate polynomial and we have to determine whether the polynomial is identically zero. We improve known results on locally decodable codes and on polynomial identity testing and show a relation between the two notions. In particular we obtain the following results: 1. We show that if E: F n ↦ → F m is a linear LDC with 2 queries then m = exp(Ω(n)). Previously this was only known for fields of size << 2 n [GKST01]. 2. We show that from every depth 3 arithmetic circuit (ΣΠΣ circuit), C, with a bounded (constant) top fanin that computes the zero polynomial, one can construct a locally decodeable code. More formally: Assume that C is minimal (no subset of the multiplication gates sums to zero) and simple (no linear function appears in all the multiplication gates). Denote by d the degree of the polynomial computed by C and by r the rank of the linear
Polynomial identity testing for depth 3 circuits
 in Proceedings of the twentyfirst Annual IEEE Conference on Computational Complexity (CCC
, 2006
"... Abstract — We study ΣΠΣ(k) circuits, i.e., depth three arithmetic circuits with top fanin k. We give the first deterministic polynomial time blackbox identity test for ΣΠΣ(k) circuits over the field Q of rational numbers, thus resolving a question posed by Klivans and Spielman (STOC 2001). Our main ..."
Abstract

Cited by 49 (10 self)
 Add to MetaCart
(Show Context)
Abstract — We study ΣΠΣ(k) circuits, i.e., depth three arithmetic circuits with top fanin k. We give the first deterministic polynomial time blackbox identity test for ΣΠΣ(k) circuits over the field Q of rational numbers, thus resolving a question posed by Klivans and Spielman (STOC 2001). Our main technical result is a structural theorem for ΣΠΣ(k) circuits that compute the zero polynomial. In particular we show that if a ΣΠΣ(k) circuit C = ∑ i∈[k] Ai
Nonuniform ACC circuit lower bounds
, 2010
"... The class ACC consists of circuit families with constant depth over unbounded fanin AND, OR, NOT, and MODm gates, where m> 1 is an arbitrary constant. We prove: • NTIME[2 n] does not have nonuniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasipoly ..."
Abstract

Cited by 46 (7 self)
 Add to MetaCart
(Show Context)
The class ACC consists of circuit families with constant depth over unbounded fanin AND, OR, NOT, and MODm gates, where m> 1 is an arbitrary constant. We prove: • NTIME[2 n] does not have nonuniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasipolynomials and other less natural functions. • ENP, the class of languages recognized in 2O(n) time with an NP oracle, doesn’t have nonuniform ACC circuits of 2no(1) size. The lower bound gives an exponential sizedepth tradeoff: for every d there is a δ> 0 such that ENP doesn’t have depthd ACC circuits of size 2nδ. Previously, it was not known whether EXP NP had depth3 polynomial size circuits made out of only MOD6 gates. The highlevel strategy is to design faster algorithms for the circuit satisfiability problem over ACC circuits, then prove that such algorithms entail the above lower bounds. The algorithm combines known properties of ACC with fast rectangular matrix multiplication and dynamic programming, while the second step requires a subtle strengthening of the author’s prior work [STOC’10]. Supported by the Josef Raviv Memorial Fellowship.
Improving Exhaustive Search Implies Superpolynomial Lower Bounds
, 2009
"... The P vs NP problem arose from the question of whether exhaustive search is necessary for problems with short verifiable solutions. We do not know if even a slight algorithmic improvement over exhaustive search is universally possible for all NP problems, and to date no major consequences have been ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
The P vs NP problem arose from the question of whether exhaustive search is necessary for problems with short verifiable solutions. We do not know if even a slight algorithmic improvement over exhaustive search is universally possible for all NP problems, and to date no major consequences have been derived from the assumption that an improvement exists. We show that there are natural NP and BPP problems for which minor algorithmic improvements over the trivial deterministic simulation already entail lower bounds such as NEXP ̸ ⊆ P/poly and LOGSPACE ̸ = NP. These results are especially interesting given that similar improvements have been found for many other hard problems. Optimistically, one might hope our results suggest a new path to lower bounds; pessimistically, they show that carrying out the seemingly modest program of finding slightly better algorithms for all search problems may be extremely difficult (if not impossible). We also prove unconditional superpolynomial timespace lower bounds for improving on exhaustive search: there is a problem verifiable with k(n) length witnesses in O(n a) time (for some a and some function k(n) ≤ n) that cannot be solved in k(n) c n a+o(1) time and k(n) c n o(1) space, for every c ≥ 1. While such problems can always be solved by exhaustive search in O(2 k(n) n a) time and O(k(n) + n a) space, we can prove a superpolynomial lower bound in the parameter k(n) when space usage is restricted.