Results 1  10
of
333
Faulttolerant quantum computation by anyons
, 2003
"... A twodimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation ..."
Abstract

Cited by 94 (3 self)
 Add to MetaCart
A twodimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation is faulttolerant by its physical nature.
On The MelvinMortonRozansky Conjecture
, 1994
"... . We prove a conjecture stated by Melvin and Morton (and elucidated further by Rozansky) saying that the AlexanderConway polynomial of a knot can be read from some of the coefficients of the Jones polynomials of cables of that knot (i.e., coefficients of the "colored" Jones polynomial). We first ..."
Abstract

Cited by 84 (14 self)
 Add to MetaCart
. We prove a conjecture stated by Melvin and Morton (and elucidated further by Rozansky) saying that the AlexanderConway polynomial of a knot can be read from some of the coefficients of the Jones polynomials of cables of that knot (i.e., coefficients of the "colored" Jones polynomial). We first reduce the problem to the level of weight systems using a general principle, which may be of some independent interest, and which sometimes allows to deduce equality of Vassiliev invariants from the equality of their weight systems. We then prove the conjecture combinatorially on the level of weight systems. Finally, we prove a generalization of the MelvinMortonRozansky (MMR) conjecture to knot invariants coming from arbitrary semisimple Lie algebras. As side benefits we discuss a relation between the Conway polynomial and immanants and a curious formula for the weight system of the colored Jones polynomial. Contents 1. Introduction 2 1.1. The conjecture 1.2. Preliminaries 1....
Evaluations of kfold Euler/Zagier sums: a compendium of results for arbitrary k
 THE ELECTRONIC JOURNAL OF COMBINATORICS 4 (NO.2) (1997), #R5
, 1997
"... Euler sums (also called Zagier sums) occur within the context of knot theory and quantum field theory. There are various conjectures related to these sums whose incompletion is a sign that both the mathematics and physics communities do not yet completely understand the field. Here, we assemble res ..."
Abstract

Cited by 70 (27 self)
 Add to MetaCart
Euler sums (also called Zagier sums) occur within the context of knot theory and quantum field theory. There are various conjectures related to these sums whose incompletion is a sign that both the mathematics and physics communities do not yet completely understand the field. Here, we assemble results for Euler/Zagier sums (also known as multidimensional zeta/harmonic sums) of arbitrary depth, including sign alternations. Many of our results were obtained empirically and are apparently new. By carefully compiling and examining a huge data base of high precision numerical evaluations, we can claim with some confidence that certain classes of results are exhaustive. While many proofs are lacking, we have sketched derivations of all results that have so far been proved.
Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the split decomposition
, 2003
"... ..."
Pointed Hopf algebras
 In “New directions in Hopf algebras”, MSRI series Cambridge Univ
, 2002
"... Abstract. This is a survey on pointed Hopf algebras over algebraically closed fields of characteristic 0. We propose to classify pointed Hopf algebras A by first determining the graded Hopf algebra gr A associated to the coradical filtration of A. The A0coinvariants elements form a braided Hopf alg ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
Abstract. This is a survey on pointed Hopf algebras over algebraically closed fields of characteristic 0. We propose to classify pointed Hopf algebras A by first determining the graded Hopf algebra gr A associated to the coradical filtration of A. The A0coinvariants elements form a braided Hopf algebra R in the category of Yetter–Drinfeld modules over the coradical A0 = Γ, Γ the group of grouplike elements of A, and gr A ≃ R#A0. We call the braiding of the primitive elements of R the infinitesimal braiding of A. If this braiding is of Cartan type [AS2], then it is often possible to determine R, to show that R is generated as an algebra by its primitive elements and finally to compute all deformations or liftings, that is pointed Hopf algebras such that gr A ≃ R#Γ. In the last chapter, as a concrete illustration of the method, we describe explicitly all finitedimensional pointed Hopf algebras A with abelian group of grouplikes G(A) and infinitesimal braiding of type An (up to some exceptional cases). In other words, we compute all the liftings of type An; this result is our main new
From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories
 J. Pure Appl. Alg
, 2003
"... We consider certain categorical structures that are implicit in subfactor theory. Making the connection between subfactor theory (at finite index) and category theory explicit sheds light on both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary ground f ..."
Abstract

Cited by 52 (6 self)
 Add to MetaCart
We consider certain categorical structures that are implicit in subfactor theory. Making the connection between subfactor theory (at finite index) and category theory explicit sheds light on both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary ground fields, and the proof of new results about topological invariants in three dimensions. The central notion is that of a Frobenius algebra in a tensor category A, which reduces to the classical notion if A = FVect, where F is a field. An object X ∈ A with twosided dual X gives rise to a Frobenius algebra in A, and under weak additional conditions we prove a converse: There exists a bicategory E with ObjE = {A, B} such that EndE(A) ⊗ ≃ A and such that there are J, J: B ⇋ A producing the given Frobenius algebra. Many properties (additivity, sphericity, semisimplicity,...) of A carry over to the bicategory E. We define weak monoidal Morita equivalence of tensor categories, denoted A ≈ B, and establish a correspondence between Frobenius algebras in A and tensor categories B ≈ A. While considerably weaker than equivalence of tensor categories, weak monoidal Morita equivalence A ≈ B has remarkable consequences: A and B have equivalent (as braided tensor categories) quantum doubles (‘centers’) and (if A, B are semisimple spherical or ∗categories) have equal dimensions and give rise the same state sum invariant of closed oriented 3manifolds as recently defined by Barrett and Westbury. An instructive example is provided by finite dimensional semisimple and cosemisimple Hopf algebras, for which we prove H − mod ≈ ˆH − mod. The present formalism permits a fairly complete analysis of the center of a semisimple spherical category, which is the subject of the companion paper math.CT/0111205. 1
Category theory for conformal boundary conditions
 FIELDS INST. COMMUN. AMER. MATH. SOC., PROVIDENCE, RI
, 2003
"... ... inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a byproduct we obtain results about the FrobeniusSchur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the d ..."
Abstract

Cited by 50 (14 self)
 Add to MetaCart
... inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a byproduct we obtain results about the FrobeniusSchur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in twodimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIMrep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.