Results 1  10
of
68
On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts  Towards Memetic Algorithms
, 1989
"... Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could ..."
Abstract

Cited by 186 (10 self)
 Add to MetaCart
Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could possibly enumerate 10 9 tours per second on a computer it would thus take roughly 10 639 years of computing to establish the optimality of this tour by exhaustive enumeration." This quote shows the real difficulty of a combinatorial optimization problem. The huge number of configurations is the primary difficulty when dealing with one of these problems. The quote belongs to M.W Padberg and M. Grotschel, Chap. 9., "Polyhedral computations", from the book The Traveling Salesman Problem: A Guided tour of Combinatorial Optimization [124]. It is interesting to compare the number of configurations of realworld problems in combinatorial optimization with those large numbers arising in Cosmol...
QAPLIB  A Quadratic Assignment Problem Library
, 1996
"... This report, the data and also most of the best feasible solutions are available via World Wide Web. The URLs of the QAPLIB Home Page are http://www.opt.math.tugraz.ac.at/qaplib/ ..."
Abstract

Cited by 163 (6 self)
 Add to MetaCart
This report, the data and also most of the best feasible solutions are available via World Wide Web. The URLs of the QAPLIB Home Page are http://www.opt.math.tugraz.ac.at/qaplib/
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 91 (16 self)
 Add to MetaCart
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Genetic Hybrids for the Quadratic Assignment Problem
 DIMACS Series in Mathematics and Theoretical Computer Science
, 1993
"... . A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. Thes ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
. A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. These hybrid algorithms are then used to improve on the best known solutions of many test problems in the literature. 1. Introduction The quadratic assignment problem (QAP) can be stated as: min OE2P (n) n X i=1 n X j=1 a ij b OE(i)OE(j) ; where A = (a ij ) and B = (b kl ) are two n \Theta n matrices and P (n) is the set of all permutations of f1; :::; ng. Matrix A is often referred to as a distance matrix between sites, and B as a flow matrix between objects. In most cases, the matrices A and B are symmetrical with a null diagonal. A permutation may then be interpreted as an assignment of objects to sites with a quadratic cost associated to it. There are many applications that can be fo...
Semidefinite Programming Relaxations For The Quadratic Assignment Problem
, 1998
"... Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP re ..."
Abstract

Cited by 72 (25 self)
 Add to MetaCart
Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualification always fails for the primal problem. Although there is no duality gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the geometrical structure of the relaxation, we are able to find projected SDP relaxations. These new relaxations, and their duals, satisfy the Slater constraint qualification, and so can be solved numerically using primaldual interiorpoint methods. For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systems which arise when finding the Newton direction. The preconditioner is found by exploiting th...
A New Lower Bound via Projection for the Quadratic Assignment Problem
 Mathematics of Operations Research
, 1992
"... New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making efficient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound ..."
Abstract

Cited by 53 (17 self)
 Add to MetaCart
New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making efficient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound is easy to implement and often provides high quality bounds under an acceptable computational effort. Key Words: quadratic assignment problem, lower bounds, relaxations, orthogonal projection, eigenvalue bounds. 0 The authors would like to thank the Natural Sciences and Engineering Research Council of Canada and the Austrian Science Foundatation (FWF) for their support. 1 Introduction The Quadratic Assignment Problem QAP is a generic model for various problems arising e.g. in location theory, VLSI design, facility layout, keyboard design and many other areas, see [1] for a recent survey on the QAP. Formally the QAP consists of minimizing f(X) = tr(AXB t + C)X t over the set of permu...
Improving the scalability of data center networks with trafficaware virtual machine placement
 in Proc. of INFOCOM’10
, 2010
"... Abstract—The scalability of modern data centers has become a practical concern and has attracted significant attention in recent years. In contrast to existing solutions that require changes in the network architecture and the routing protocols, this paper proposes using trafficaware virtual machin ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
Abstract—The scalability of modern data centers has become a practical concern and has attracted significant attention in recent years. In contrast to existing solutions that require changes in the network architecture and the routing protocols, this paper proposes using trafficaware virtual machine (VM) placement to improve the network scalability. By optimizing the placement of VMs on host machines, traffic patterns among VMs can be better aligned with the communication distance between them, e.g. VMs with large mutual bandwidth usage are assigned to host machines in close proximity. We formulate the VM placement as an optimization problem and prove its hardness. We design a twotier approximate algorithm that efficiently solves the VM placement problem for very large problem sizes. Given the significant difference in the traffic patterns seen in current data centers and the structural differences of the recently proposed data center architectures, we further conduct a comparative analysis on the impact of the traffic patterns and the network architectures on the potential performance gain of trafficaware VM placement. We use traffic traces collected from production data centers to evaluate our proposed VM placement algorithm, and we show a significant performance improvement compared to existing generic methods that do not take advantage of traffic patterns and data center network characteristics. I.
Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming
 Operations Research
, 1995
"... A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the produc ..."
Abstract

Cited by 33 (3 self)
 Add to MetaCart
A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the product of the flow and the distance between locations to which the facilities are assigned. Proving optimality of solutions to quadratic assignment problems has been limited to instances of small dimension (n less than or equal to 20), in part because known lower bounds for the QAP are of poor quality. In this paper, we compute lower bounds for a wide range of quadratic assignment problems using a linear programmingbased lower bound studied by Drezner (1994). On the majority of quadratic assignment problems tested, the computed lower bound is the new best known lower bound. In 87 percent of the instances, we produced the best known lower bound. On several instances, including some of dimension n equal to 20, the lower bound is tight. The linear programs, which can be large even for moderate values of n, are solved with an interior point code that uses a preconditioned conjugate gradient algorithm to compute the directions taken at each iteration by the interior point algorithm. Attempts to
Lower Bounds for the Quadratic Assignment Problem Based Upon a Dual Formulation
"... A new bounding procedure for the Quadratic Assignment Problem (QAP) is described which extends the Hungarian method for the Linear Assignment Problem (LAP) to QAPs, operating on the four dimensional cost array of the QAP objective function. The QAP is iteratively transformed in a series of equivalen ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
A new bounding procedure for the Quadratic Assignment Problem (QAP) is described which extends the Hungarian method for the Linear Assignment Problem (LAP) to QAPs, operating on the four dimensional cost array of the QAP objective function. The QAP is iteratively transformed in a series of equivalent QAPs leading to an increasing sequence of lower bounds for the original problem. To this end, two classes of operations which transform the four dimensional cost array are defined. These have the property that the values of the transformed objective function Z' are the corresponding values of the old objective function Z, shifted by some amount C. In the case that all entries of the transformed cost array are nonnegative, then C is a lower bound for the initial QAP. If, moreover, there exists a feasible solution U to the QAP, such that its value in the transformed problem is zero, then C is the optimal value of Z and U is an optimal solution for the original QAP. The transformations are iteratively applied until no significant increase in constant C as above is found, resulting in the so called Dual Procedure (DP). Several strategies are listed for appropriately determining C, or equivalently, transforming the cost array. The goal is the modification of the elements in the cost array so as to obtain new equivalent problems which bring the QAP closer to solution. In some cases the QAP is actually solved, though solution is not guaranteed. The close relationship between the DP and the Linear Programming formulation of Adams and Johnson is presented. The DP attempts to solve Adams and Johnsons CLP, a continuous relaxation of a linearization of the QAP. This explains why the DP produces bounds close to the optimum values for CLP calculated by Johnson in her dissertation and by...