Results 1  10
of
174
Consensus and cooperation in networked multiagent systems
 Proceedings of the IEEE
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An over ..."
Abstract

Cited by 279 (2 self)
 Add to MetaCart
Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in smallworld networks, Markov processes and gossipbased algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with latticetype nearest neighbor interactions. Simulation results are presented that demonstrate the role of smallworld effects on the speed of consensus algorithms and cooperative control of multivehicle formations.
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 208 (5 self)
 Add to MetaCart
Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join and old nodes leave the network. Algorithms for such networks need to be robust against changes in topology. Additionally, nodes in sensor networks operate under limited computational, communication, and energy resources. These constraints have motivated the design of “gossip ” algorithms: schemes which distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient method that solves the optimization problem over the network. The relation of averaging time to the second largest eigenvalue naturally relates it to the mixing time of a random walk with transition probabilities derived from the gossip algorithm. We use this connection to study the performance and scaling of gossip algorithms on two popular networks: Wireless Sensor Networks, which are modeled as Geometric Random Graphs, and the Internet graph under the socalled Preferential Connectivity (PC) model.
Gossip algorithms: Design, analysis and applications. 2004. Submitted, available at www.stanford.edu/~devavrat/infocom05.ps
"... Ahtruct Motivated by applications to sensor, peertopeer and ad hoc networks, we study distributed asynchronous algorithms, also known as gossip algorithms, for computation and information exchange in an arbitrarily connected network of nodes. Nodes in such networks operate under limited computatio ..."
Abstract

Cited by 158 (14 self)
 Add to MetaCart
Ahtruct Motivated by applications to sensor, peertopeer and ad hoc networks, we study distributed asynchronous algorithms, also known as gossip algorithms, for computation and information exchange in an arbitrarily connected network of nodes. Nodes in such networks operate under limited computational, communication and energy resources. These constraints naturally give rise to "gossip " algorithms: schemes which distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for arbitrary network, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic mairix characterizing the algorithm. Using recent results of Boyd, Diaconis and Xiao
A scheme for robust distributed sensor fusion based on average consensus
 Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN
, 2005
"... Abstract — We consider a network of distributed sensors, where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximum ..."
Abstract

Cited by 140 (3 self)
 Add to MetaCart
Abstract — We consider a network of distributed sensors, where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximumlikelihood estimate of the parameters. This scheme doesn’t involve explicit pointtopoint message passing or routing; instead, it diffuses information across the network by updating each node’s data with a weighted average of its neighbors ’ data (they maintain the same data structure). At each step, every node can compute a local weighted leastsquares estimate, which converges to the global maximumlikelihood solution. This scheme is robust to unreliable communication links. We show that it works in a network with dynamically changing topology, provided that the infinitely occurring communication graphs are jointly connected. I.
Distributed average consensus with leastmeansquare deviation
 Journal of Parallel and Distributed Computing
, 2005
"... We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted averag ..."
Abstract

Cited by 82 (5 self)
 Add to MetaCart
We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted average of its neighbors ’ values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus can be measured by the total meansquare deviation of the individual variables from their average, which converges to a steadystate value. We consider the problem of finding the (symmetric) edge weights that result in the least meansquare deviation in steady state. We show that this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational methods for solving this problem, and compare the weights and the meansquare deviations obtained by this method and several other weight design methods.
Distributed Kalman filtering in sensor networks with quantifiable performance
 In 2005 Fourth International Symposium on Information Processing in Sensor Networks (IPSN
, 2005
"... We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities such as connection density, topology, and band ..."
Abstract

Cited by 79 (6 self)
 Add to MetaCart
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities such as connection density, topology, and bandwidth are varied. Our main contribution is a frequencydomain characterization of the distributed estimator’s performance; this is quantified in terms of a special matrix associated with the connection topology called the graph Laplacian, and also the rate of message exchange between immediate neighbors in the communication network. We present simulations for an array of sonarlike sensors to verify our analysis results. 1.
Quantized consensus
, 2007
"... We study the distributed averaging problem on arbitrary connected graphs, with the additional constraint that the value at each node is an integer. This discretized distributed averaging problem models several problems of interest, such as averaging in a network with finite capacity channels and loa ..."
Abstract

Cited by 56 (0 self)
 Add to MetaCart
We study the distributed averaging problem on arbitrary connected graphs, with the additional constraint that the value at each node is an integer. This discretized distributed averaging problem models several problems of interest, such as averaging in a network with finite capacity channels and load balancing in a processor network. We describe simple randomized distributed algorithms which achieve consensus to the extent that the discrete nature of the problem permits. We give bounds on the convergence time of these algorithms for fully connected networks and linear networks.
Convergence speed in distributed consensus and averaging
 IN PROC. OF THE 45TH IEEE CDC
, 2006
"... We study the convergence speed of distributed iterative algorithms for the consensus and averaging problems, with emphasis on the latter. We first consider the case of a fixed communication topology. We show that a simple adaptation of a consensus algorithm leads to an averaging algorithm. We prove ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
We study the convergence speed of distributed iterative algorithms for the consensus and averaging problems, with emphasis on the latter. We first consider the case of a fixed communication topology. We show that a simple adaptation of a consensus algorithm leads to an averaging algorithm. We prove lower bounds on the worstcase convergence time for various classes of linear, timeinvariant, distributed consensus methods, and provide an algorithm that essentially matches those lower bounds. We then consider the case of a timevarying topology, and provide a polynomialtime averaging algorithm.
Stability of continuoustime distributed consensus algorithms
, 2004
"... We study the stability properties of linear timevarying systems in continuous time whose system matrix is Metzler with zero row sums. This class of systems arises naturally in the context of distributed decision problems, coordination and rendezvous tasks and synchronization problems. The equilibri ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
We study the stability properties of linear timevarying systems in continuous time whose system matrix is Metzler with zero row sums. This class of systems arises naturally in the context of distributed decision problems, coordination and rendezvous tasks and synchronization problems. The equilibrium set contains all states with identical state components. We present sufficient conditions guaranteeing uniform exponential stability of this equilibrium set, implying that all state components converge to a common value as time grows unbounded. Furthermore it is shown that this convergence result is robust with respect to an arbitrary delay, provided that the delay affects only the offdiagonal terms in the differential equation.
On Distributed Averaging Algorithms and Quantization Effects
, 2009
"... We consider distributed iterative algorithms for the averaging problem over timevarying topologies. Our focus is on the convergence time of such algorithms when complete (unquantized) information is available, and on the degradation of performance when only quantized information is available. We stu ..."
Abstract

Cited by 47 (13 self)
 Add to MetaCart
We consider distributed iterative algorithms for the averaging problem over timevarying topologies. Our focus is on the convergence time of such algorithms when complete (unquantized) information is available, and on the degradation of performance when only quantized information is available. We study a large and natural class of averaging algorithms, which includes the vast majority of algorithms proposed to date, and provide tight polynomial bounds on their convergence time. We also describe an algorithm within this class whose convergence time is the best among currently available averaging algorithms for timevarying topologies. We then propose and analyze distributed averaging algorithms under the additional constraint that agents can only store and communicate quantized information, so that they can only converge to the average of the initial values of the agents within some error. We establish bounds on the error and tight bounds on the convergence time, as a function of the number of quantization levels.