Results 1  10
of
418
Consensus Problems in Networks of Agents with Switching Topology and TimeDelays
, 2003
"... In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no timedelays, ii) networks with fixed topology and communication timedelays, and iii) maxconsensus problems (or leader ..."
Abstract

Cited by 1052 (17 self)
 Add to MetaCart
(Show Context)
In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no timedelays, ii) networks with fixed topology and communication timedelays, and iii) maxconsensus problems (or leader determination) for groups of discretetime agents. In each case, we introduce a linear/nonlinear consensus protocol and provide convergence analysis for the proposed distributed algorithm. Moreover, we establish a connection between the Fiedler eigenvalue of the information flow in a network (i.e. algebraic connectivity of the network) and the negotiation speed (or performance) of the corresponding agreement protocol. It turns out that balanced digraphs play an important role in addressing averageconsensus problems. We introduce disagreement functions that play the role of Lyapunov functions in convergence analysis of consensus protocols. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
, 2010
"... ..."
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
(Show Context)
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in smallworld networks, Markov processes and gossipbased algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with latticetype nearest neighbor interactions. Simulation results are presented that demonstrate the role of smallworld effects on the speed of consensus algorithms and cooperative control of multivehicle formations.
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 522 (5 self)
 Add to MetaCart
(Show Context)
Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join and old nodes leave the network. Algorithms for such networks need to be robust against changes in topology. Additionally, nodes in sensor networks operate under limited computational, communication, and energy resources. These constraints have motivated the design of “gossip ” algorithms: schemes which distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient method that solves the optimization problem over the network. The relation of averaging time to the second largest eigenvalue naturally relates it to the mixing time of a random walk with transition probabilities derived from the gossip algorithm. We use this connection to study the performance and scaling of gossip algorithms on two popular networks: Wireless Sensor Networks, which are modeled as Geometric Random Graphs, and the Internet graph under the socalled Preferential Connectivity (PC) model.
A scheme for robust distributed sensor fusion based on average consensus
 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN
, 2005
"... We consider a network of distributed sensors, where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximumlikelihoo ..."
Abstract

Cited by 250 (3 self)
 Add to MetaCart
We consider a network of distributed sensors, where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximumlikelihood estimate of the parameters. This scheme doesn’t involve explicit pointtopoint message passing or routing; instead, it diffuses information across the network by updating each node’s data with a weighted average of its neighbors ’ data (they maintain the same data structure). At each step, every node can compute a local weighted leastsquares estimate, which converges to the global maximumlikelihood solution. This scheme is robust to unreliable communication links. We show that it works in a network with dynamically changing topology, provided that the infinitely occurring communication graphs are jointly connected.
Information Consensus in Multivehicle Cooperative Control
, 2007
"... The abundance of embedded computational resources in autonomous vehicles enables enhanced operational effectiveness through cooperative teamwork in civilian and military applications. Compared to autonomous vehicles that perform solo missions, greater efficiency and operational capability can be rea ..."
Abstract

Cited by 228 (23 self)
 Add to MetaCart
The abundance of embedded computational resources in autonomous vehicles enables enhanced operational effectiveness through cooperative teamwork in civilian and military applications. Compared to autonomous vehicles that perform solo missions, greater efficiency and operational capability can be realized from teams of autonomous vehicles operating in a coordinated fashion. Potential applications for multivehicle systems include spacebased interferometers, combat, surveillance, and reconnaissance systems, hazardous material handling, and distributed reconfigurable sensor networks. To enable these applications, various cooperative control capabilities need to be developed, including formation control, rendezvous, attitude alignment, flocking, foraging, task and role assign
Distributed average consensus with leastmeansquare deviation
 Journal of Parallel and Distributed Computing
, 2005
"... We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted averag ..."
Abstract

Cited by 201 (5 self)
 Add to MetaCart
(Show Context)
We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted average of its neighbors ’ values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus can be measured by the total meansquare deviation of the individual variables from their average, which converges to a steadystate value. We consider the problem of finding the (symmetric) edge weights that result in the least meansquare deviation in steady state. We show that this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational methods for solving this problem, and compare the weights and the meansquare deviations obtained by this method and several other weight design methods.
Distributed Kalman filtering in sensor networks with quantifiable performance
 In 2005 Fourth International Symposium on Information Processing in Sensor Networks (IPSN
, 2005
"... We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities such as connection density, topology, and band ..."
Abstract

Cited by 171 (7 self)
 Add to MetaCart
(Show Context)
We analyze the performance of a distributed Kalman filter proposed in recent work on distributed dynamical systems. This approach to distributed estimation is novel in that it admits a systematic analysis of its performance as various network quantities such as connection density, topology, and bandwidth are varied. Our main contribution is a frequencydomain characterization of the distributed estimator’s performance; this is quantified in terms of a special matrix associated with the connection topology called the graph Laplacian, and also the rate of message exchange between immediate neighbors in the communication network. We present simulations for an array of sonarlike sensors to verify our analysis results. 1.
Agreement over random networks
 IEEE Trans. Autom. Control
, 2005
"... Abstract—We consider the agreement problem over random information networks. In a randomnetwork, the existence of an information channel between a pair of units at each time instance is probabilistic and independent of other channels; hence, the topology of the network varies over time. In such a f ..."
Abstract

Cited by 159 (3 self)
 Add to MetaCart
Abstract—We consider the agreement problem over random information networks. In a randomnetwork, the existence of an information channel between a pair of units at each time instance is probabilistic and independent of other channels; hence, the topology of the network varies over time. In such a framework, we address the asymptotic agreement for the networked units via notions from stochastic stability. Furthermore, we delineate on the rate of convergence as it relates to the algebraic connectivity of random graphs. Index Terms—Agreement problem, networked systems, random graphs, stochastic stability, supermartingales. I.
Quantized consensus
, 2007
"... We study the distributed averaging problem on arbitrary connected graphs, with the additional constraint that the value at each node is an integer. This discretized distributed averaging problem models several problems of interest, such as averaging in a network with finite capacity channels and loa ..."
Abstract

Cited by 150 (0 self)
 Add to MetaCart
(Show Context)
We study the distributed averaging problem on arbitrary connected graphs, with the additional constraint that the value at each node is an integer. This discretized distributed averaging problem models several problems of interest, such as averaging in a network with finite capacity channels and load balancing in a processor network. We describe simple randomized distributed algorithms which achieve consensus to the extent that the discrete nature of the problem permits. We give bounds on the convergence time of these algorithms for fully connected networks and linear networks.