Results 1 
2 of
2
Unit Disk Graph Recognition is NPHard
 Computational Geometry. Theory and Applications
, 1993
"... Unit disk graphs are the intersection graphs of unit diameter closed disks in the plane. This paper reduces SATISFIABILITY to the problem of recognizing unit disk graphs. Equivalently, it shows that determining if a graph has sphericity 2 or less, even if the graph is planar or is known to have s ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
Unit disk graphs are the intersection graphs of unit diameter closed disks in the plane. This paper reduces SATISFIABILITY to the problem of recognizing unit disk graphs. Equivalently, it shows that determining if a graph has sphericity 2 or less, even if the graph is planar or is known to have sphericity at most 3, is NPhard. We show how this reduction can be extended to 3 dimensions, thereby showing that unit sphere graph recognition, or determining if a graph has sphericity 3 or less, is also NPhard. We conjecture that Ksphericity is NPhard for all fixed K greater than 1. 1 Introduction A unit disk graph is the intersection graph of a set of unit diameter closed disks in the plane. That is, each vertex corresponds to a disk in the plane, and two vertices are adjacent in the graph if the corresponding disks intersect. The set of disks is said to realize the graph. Of course, the unit of distance is not critical, since the disks realize the same graph even if the coordina...