Results 1 
1 of
1
Inductive and Coinductive types with Iteration and Recursion
 Proceedings of the 1992 Workshop on Types for Proofs and Programs, Bastad
, 1992
"... We study (extensions of) simply and polymorphically typed lambda calculus from a point of view of how iterative and recursive functions on inductive types are represented. The inductive types can usually be understood as initial algebras in a certain category and then recursion can be defined in ter ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
We study (extensions of) simply and polymorphically typed lambda calculus from a point of view of how iterative and recursive functions on inductive types are represented. The inductive types can usually be understood as initial algebras in a certain category and then recursion can be defined in terms of iteration. However, in the syntax we often have only weak initiality, which makes the definition of recursion in terms of iteration inefficient or just impossible. We propose a categorical notion of (primitive) recursion which can easily be added as computation rule to a typed lambda calculus and gives us a clear view on what the dual of recursion, corecursion, on coinductive types is. (The same notion has, independently, been proposed by [Mendler 1991].) We look at how these syntactic notions work out in the simply typed lambda calculus and the polymorphic lambda calculus. It will turn out that in the syntax, recursion can be defined in terms of corecursion and vice versa using polymo...