Results 1 
7 of
7
lambdacalculi with explicit substitutions and composition which preserve beta strong normalization (Extended Abstract)
, 1996
"... ) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cede ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cedex, France, fkesner,puelg@lri.fr. Abstract. We study preservation of fistrong normalization by d and dn , two confluent calculi with explicit substitutions defined in [10]; the particularity of these calculi is that both have a composition operator for substitutions. We develop an abstract simulation technique allowing to reduce preservation of fistrong normalization of one calculus to that of another one, and apply said technique to reduce preservation of fistrong normalization of d and dn to that of f , another calculus having no composition operator. Then, preservation of fistrong normalization of f is shown using the same technique as in [2]. As a consequence, d and dn become the fir...
Normalised Rewriting and Normalised Completion
, 1994
"... We introduce normalised rewriting, a new rewrite relation. It generalises former notions of rewriting modulo E, dropping some conditions on E. For example, E can now be the theory of identity, idempotency, the theory of Abelian groups, the theory of commutative rings. We give a new completion algor ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
We introduce normalised rewriting, a new rewrite relation. It generalises former notions of rewriting modulo E, dropping some conditions on E. For example, E can now be the theory of identity, idempotency, the theory of Abelian groups, the theory of commutative rings. We give a new completion algorithm for normalised rewriting. It contains as an instance the usual AC completion algorithm, but also the wellknown Buchberger's algorithm for computing standard bases of polynomial ideals. We investigate the particular case of completion of ground equations, In this case we prove by a uniform method that completion modulo E terminates, for some interesting E. As a consequence, we obtain the decidability of the word problem for some classes of equational theories. We give implementation results which shows the efficiency of normalised completion with respect to completion modulo AC. 1 Introduction Equational axioms are very common in most sciences, including computer science. Equations can ...
Rewriting Modulo a Rewrite System
, 1995
"... . We introduce rewriting with two sets of rules, the first interpreted equationally and the second not. A semantic view considers equational rules as defining an equational theory and reduction rules as defining a rewrite relation modulo this theory. An operational view considers both sets of rules ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
. We introduce rewriting with two sets of rules, the first interpreted equationally and the second not. A semantic view considers equational rules as defining an equational theory and reduction rules as defining a rewrite relation modulo this theory. An operational view considers both sets of rules as similar. We introduce sufficient properties for these two views to be equivalent (up to different notions of equivalence). The paper ends with a collection of example showing the effectiveness of this approach. Rewriting can be viewed simultaneously as the most basic symbolmanipulating method, and as a very expressive specification framework, given the expressive power of rewriting modulo equations. It is a primary candidate to the role of a general logical framework [Mes92, MOM93]. Historically, rewriting has been given an equational semantics, saying that a rewrite rule u \Gamma! v is interpreted as u is equal to v. This is the case for instance when defining functions or solving the w...
A total ACcompatible ordering based on RPO
 Theoretical Computer Science
, 1995
"... We define a simplification ordering on terms which is ACcompatible and total on nonAC equivalent ground terms, without any restrictions on the signature like the number of ACsymbols or free symbols. Unlike previous work by Narendran and Rusinowitch [NR91], our ACRPO ordering is not based on poly ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
We define a simplification ordering on terms which is ACcompatible and total on nonAC equivalent ground terms, without any restrictions on the signature like the number of ACsymbols or free symbols. Unlike previous work by Narendran and Rusinowitch [NR91], our ACRPO ordering is not based on polynomial interpretations, but on a simple extension of the wellknown RPO ordering (with a total (arbitrary) precedence on the function symbols). This solves an open question posed e.g. by Bachmair [Bac92]. A second difference is that this ordering is also defined on terms with variables, which makes it applicable in practice for complete theorem proving strategies with builtin ACunification and for orienting nonground rewrite systems. The ordering is defined in a simple way by means of rewrite rules, and can be easily implemented, since its main component is RPO. 1 Introduction Automated termination proofs are wellknown to be crucial for using rewritinglike methods in theorem proving an...
Rewrite Proofs and Computations
 Proof and Computation
, 1995
"... . Rewriting is a general paradigm for expressing computations in various logics, and we focus here on rewriting techniques in equational logic. When used at the proof level, rewriting provides with a very powerful methodology for proving completeness results, a technique that is illustrated here. We ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
. Rewriting is a general paradigm for expressing computations in various logics, and we focus here on rewriting techniques in equational logic. When used at the proof level, rewriting provides with a very powerful methodology for proving completeness results, a technique that is illustrated here. We also consider whether important properties of rewrite systems such as confluence and termination can be proved in a modular way. Finally, we stress the links between rewriting and tree automata. Previous surveys include [21; 18; 37; 12; 45; 46]. The present one owes much to [21]. Keywords. completion, confluence, critical pair, ground reducibility, inductive completion, local confluence, modularity, narrowing, ordersorted algebras, rewrite rule, rewriting, term algebra, termination, tree automata. 1 Introduction The use of equations is traditional in mathematics. Its use in computer science has culminated with the success of algebraic specifications, a method of specifying software by enc...
AssociativeCommutative Reduction Orderings via HeadPreserving Interpretations
, 1995
"... We introduce a generic definition of reduction orderings on term algebras containing associativecommutative (hereafter denoted AC) operators. These orderings are compatible with the AC theory hence makes them suitable for use in deduction systems where AC operators are builtin. Furthermore, they ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We introduce a generic definition of reduction orderings on term algebras containing associativecommutative (hereafter denoted AC) operators. These orderings are compatible with the AC theory hence makes them suitable for use in deduction systems where AC operators are builtin. Furthermore, they have the nice property of being total on AC classes of ground terms, a required property for example to avoid failure in ACcompletion, or to insure completeness of ordered strategies in firstorder theorem proving with builtin AC operators. We show that the two definitions already known of such total and ACcompatible orderings [24, 25] are actually instances of our definition. Finally, we find new such orderings which have more properties, first an ordering based on an integer polynomial interpretation, answering positively to a question left open by Narendran and Rusinowitch, and second an ordering which allow to orient the distributivity axiom in the usual way, answering positively to a ...
Automated Verification by Induction with AssociativeCommutative Operators
, 1995
"... . Theories with associative and commutative (AC) operators, such as arithmetic, process algebras, boolean algebras, sets, : : : are ubiquitous in software and hardware verification. These AC operators are difficult to handle by automatic deduction since they generate complex proofs. In this paper, w ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
. Theories with associative and commutative (AC) operators, such as arithmetic, process algebras, boolean algebras, sets, : : : are ubiquitous in software and hardware verification. These AC operators are difficult to handle by automatic deduction since they generate complex proofs. In this paper, we present new techniques for combining induction and AC reasoning, in a rewritebased theorem prover. The resulting system has proved to be quite successful for verification tasks. Thanks to its careful rewriting strategy, it needs less interaction on typical verification problems than well known tools like NQTHM, LP or PVS . We also believe that our approach can easily be integrated as an efficient tactic in other proof systems. 1 Introduction Powerful tools based on model checking have been developed for the verification of finitestate systems [6]. Their extensions to some classes of infinitestate systems has only produced moderate success. Therefore deductive methods offer a promising ...