Results 1 
5 of
5
Cycling in proofs and feasibility
 Transactions of the American Mathematical Society
, 1998
"... Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual b ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual but for which some very large number is defined to be not feasible. Parikh shows that sufficiently short proofs in this theory can only prove true statements of arithmetic. We pursue these topics in light of logical flow graphs of proofs (Buss, 1991) and show that Parikhâ€™s lower bound for concrete consistency reflects the presence of cycles in the logical graphs of short proofs of feasibility of large numbers. We discuss two concrete constructions which show the bound to be optimal and bring out the dynamical aspect of formal proofs. For this paper the concept of feasible numbers has two roles, as an idea with its own life and as a vehicle for exploring general principles on the dynamics and geometry of proofs. Cycles can be seen as a measure of how complicated a proof can be. We prove that short proofs must have cycles. 1.
On the form of witness terms
 ARCH. MATHEMATICAL LOGIC
, 2010
"... We investigate the development of terms during cutelimination in firstorder logic and Peano arithmetic for proofs of existential formulas. The form of witness terms in cutfree proofs is characterized in terms of structured combinations of basic substitutions. Based on this result, a regular tree ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We investigate the development of terms during cutelimination in firstorder logic and Peano arithmetic for proofs of existential formulas. The form of witness terms in cutfree proofs is characterized in terms of structured combinations of basic substitutions. Based on this result, a regular tree grammar computing witness terms is given and a class of proofs is shown to have only elementary cutelimination.
The Cost of a Cycle is a Square
, 1999
"... The logical flow graphs of sequent calculus proofs might contain oriented cycles. For the predicate calculus the elimination of cycles might be nonelementary and this was shown in [Car96]. For the propositional calculus, we prove that if a proof of k lines contains n cycles then there exists an ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
The logical flow graphs of sequent calculus proofs might contain oriented cycles. For the predicate calculus the elimination of cycles might be nonelementary and this was shown in [Car96]. For the propositional calculus, we prove that if a proof of k lines contains n cycles then there exists an acyclic proof with O(k n+1 ) lines. In particular, there is a quadratic time algorithm which eliminates a single cycle from a proof. These results are motivated by the search for general methods on proving lower bounds on proof size and by the design of more efficient heuristic algorithms for proof search.
Streams and Strings in Formal Proofs
"... Streams are acyclic directed subgraphs of the logical flow graph of a proof and represent bundles of paths with the same origin and the same end. Streams can be described with a natural algebraic formalism which allows to explain in algebraic terms the evolution of proofs during cutelimination. ..."
Abstract
 Add to MetaCart
Streams are acyclic directed subgraphs of the logical flow graph of a proof and represent bundles of paths with the same origin and the same end. Streams can be described with a natural algebraic formalism which allows to explain in algebraic terms the evolution of proofs during cutelimination. In our approach, "logic" is often forgotten and combinatorial properties of graphs are taken into account to explain logical phenomena.