Results 1 
6 of
6
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 560 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
ClosestPoint Problems in Computational Geometry
, 1997
"... This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, th ..."
Abstract

Cited by 65 (14 self)
 Add to MetaCart
This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, the exact and approximate postoffice problem, and the problem of constructing spanners are discussed in detail. Contents 1 Introduction 1 2 The static closest pair problem 4 2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Algorithms that are optimal in the algebraic computation tree model . 5 2.2.1 An algorithm based on the Voronoi diagram . . . . . . . . . . . 5 2.2.2 A divideandconquer algorithm . . . . . . . . . . . . . . . . . . 5 2.2.3 A plane sweep algorithm . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A deterministic algorithm that uses indirect addressing . . . . . . . . . 7 2.3.1 The degraded grid . . . . . . . . . . . . . . . . . . ...
Animation of Geometric Algorithms: A Video Review
 DEC Systems Research Center, Research Report
, 1993
"... Geometric algorithms and data structures are often easiest to understand visually, in terms of the geometric objects they manipulate. Indeed, most papers in computational geometry rely on diagrams to communicate the intuition behind the results. Algorithm animation uses dynamic visual images to expl ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Geometric algorithms and data structures are often easiest to understand visually, in terms of the geometric objects they manipulate. Indeed, most papers in computational geometry rely on diagrams to communicate the intuition behind the results. Algorithm animation uses dynamic visual images to explain algorithms. Thus it is natural to present geometric algorithms, which are inherently dynamic, via algorithm animation. The accompanying videotape presents a video review of geometric animations; the review was premiered at the 1992 ACM Symposium on Computational Geometry. The video review includes singlealgorithm animations and sample graphic displays from "workbench" systems for implementing multiple geometric algorithms. This report contains short descriptions of each video segment. vi Preface This booklet and the accompanying videotape contain animations of a variety of computational geometry algorithms. Computational geometry has existed as a field for almost two decades, and int...
and
, 1993
"... The following two computational problems are studied: Duplicate grouping: Assume that n items are given, each of which is labeled by an integer key from the set 0,..., U � 1 4. Store the items in an array of size n such that items with the same key occupy a contiguous segment of the array. Closest p ..."
Abstract
 Add to MetaCart
The following two computational problems are studied: Duplicate grouping: Assume that n items are given, each of which is labeled by an integer key from the set 0,..., U � 1 4. Store the items in an array of size n such that items with the same key occupy a contiguous segment of the array. Closest pair: Assume that a multiset of n points in the ddimensional Euclidean space is given, where d � 1 is a fixed integer. Each point is represented as a dtuple of integers in the range 0,..., U � 14 Ž or of arbitrary real numbers.. Find a closest pair, i.e., a pair of points whose distance is minimal over all such pairs.