Results 1  10
of
85
Monads for functional programming
, 1995
"... The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or nondeterminism. Three case studies are looked at in detail: how monads ease the modification o ..."
Abstract

Cited by 1312 (37 self)
 Add to MetaCart
The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or nondeterminism. Three case studies are looked at in detail: how monads ease the modification of a simple evaluator; how monads act as the basis of a datatype of arrays subject to inplace update; and how monads can be used to build parsers.
Computational Interpretations of Linear Logic
 Theoretical Computer Science
, 1993
"... We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluation an ..."
Abstract

Cited by 280 (3 self)
 Add to MetaCart
We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluation and storage allocation, while maintaining the logical content of programs as proofs, and computation as cutelimination.
Domain Theory in Logical Form
 Annals of Pure and Applied Logic
, 1991
"... The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and system ..."
Abstract

Cited by 231 (10 self)
 Add to MetaCart
The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and systems behaviour developed by Milner, Hennessy et al. based on operational semantics. • Logics of programs. Stone duality provides a junction between semantics (spaces of points = denotations of computational processes) and logics (lattices of properties of processes). Moreover, the underlying logic is geometric, which can be computationally interpreted as the logic of observable properties—i.e. properties which can be determined to hold of a process on the basis of a finite amount of information about its execution. These ideas lead to the following programme:
Structural Operational Semantics
 Handbook of Process Algebra
, 1999
"... Structural Operational Semantics (SOS) provides a framework to give an operational semantics to programming and specification languages, which, because of its intuitive appeal and flexibility, has found considerable application in the theory of concurrent processes. Even though SOS is widely use ..."
Abstract

Cited by 125 (19 self)
 Add to MetaCart
Structural Operational Semantics (SOS) provides a framework to give an operational semantics to programming and specification languages, which, because of its intuitive appeal and flexibility, has found considerable application in the theory of concurrent processes. Even though SOS is widely used in programming language semantics at large, some of its most interesting theoretical developments have taken place within concurrency theory. In particular, SOS has been successfully applied as a formal tool to establish results that hold for whole classes of process description languages. The concept of rule format has played a major role in the development of this general theory of process description languages, and several such formats have been proposed in the research literature. This chapter presents an exposition of existing rule formats, and of the rich body of results that are guaranteed to hold for any process description language whose SOS is within one of these formats. As far as possible, the theory is developed for SOS with features like predicates and negative premises.
Projections for Strictness Analysis
, 1987
"... Contexts have been proposed as a means of performing strictness analysis on nonflat domains. Roughly speaking, a context describes how much a subexpression will be evaluated by the surrounding program. This paper shows how contexts can be represented using the notion of projection from domain theo ..."
Abstract

Cited by 98 (4 self)
 Add to MetaCart
Contexts have been proposed as a means of performing strictness analysis on nonflat domains. Roughly speaking, a context describes how much a subexpression will be evaluated by the surrounding program. This paper shows how contexts can be represented using the notion of projection from domain theory. This is clearer than the previous explanation of contexts in terms of continuations. In addition, this paper describes finite domains of contexts over the nonflat list domain. This means that recursive context equations can be solved using standard fixpoint techniques, instead of the algebraic manipulation previously used. Praises of lazy functional languages have been widely sung, and so have some curses. One reason for praise is that laziness supports programming styles that are inconvenient or impossible otherwise [Joh87, Hug84, Wad85a]. One reason for cursing is that laziness hinders efficient implementation. Still, acceptable efficiency for lazy languages is at last being achieved...
Slicing Software for Model Construction
 Higherorder and Symbolic Computation
, 1999
"... Applying finitestate verification techniques (e.g., model checking) to software requires that program source code be translated to a finitestate transition system that safely models program behavior. Automatically checking such a transition system for a correctness property is typically very cos ..."
Abstract

Cited by 88 (16 self)
 Add to MetaCart
Applying finitestate verification techniques (e.g., model checking) to software requires that program source code be translated to a finitestate transition system that safely models program behavior. Automatically checking such a transition system for a correctness property is typically very costly, thus it is necessary to reduce the size of the transition system as much as possible. In fact, it is often the case that much of a program's source code is irrelevant for verifying a given correctness property. In this paper, we apply program slicing techniques to remove automatically such irrelevant code and thus reduce the size of the corresponding transition system models. We give a simple extension of the classical slicing definition, and prove its safety with respect to model checking of linear temporal logic (LTL) formulae. We discuss how this slicing strategy fits into a general methodology for deriving effective software models using abstractionbased program specializati...
Rules and Strategies for Transforming Functional and Logic Programs
 ACM Computing Surveys
, 1996
"... We present an overview of the program transformation methodology, focusing our attention on the socalled `rules + strategies' approach in the case of functional and logic programs. The paper is intended to offer an introduction to the subject. The various techniques we present are illustrated via s ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
We present an overview of the program transformation methodology, focusing our attention on the socalled `rules + strategies' approach in the case of functional and logic programs. The paper is intended to offer an introduction to the subject. The various techniques we present are illustrated via simple examples. A preliminary version of this report has been published in: Moller, B., Partsch, H., and Schuman, S. (eds.): Formal Program Development. Lecture Notes in Computer Science 755, Springer Verlag (1993) 263304. Also published in: ACM Computing Surveys, Vol 28, No. 2, June 1996. 3 1 Introduction The program transformation approach to the development of programs has first been advocated by [BurstallDarlington 77], although the basic ideas were already presented in previous papers by the same authors [Darlington 72, BurstallDarlington 75]. In that approach the task of writing a correct and efficient program is realized in two phases: the first phase consists in writing an in...
A data transformation system for biological data sources
 In Proc. of Intl. Conj. on Very Large Data Bases
, 1995
"... Scientific data of importance to biologists in the Humitn Genome Project resides not only in conventional da.tabases, but in structured files maintained in a number of different formats (e.g. ASN.1 a.nd ACE) as well a.s sequence analysis packages (e.g. BLAST and FASTA). These formats and packages co ..."
Abstract

Cited by 73 (20 self)
 Add to MetaCart
Scientific data of importance to biologists in the Humitn Genome Project resides not only in conventional da.tabases, but in structured files maintained in a number of different formats (e.g. ASN.1 a.nd ACE) as well a.s sequence analysis packages (e.g. BLAST and FASTA). These formats and packages contain a number of data types not found in conventional databases, such as lists and variants, and may be deeply nested. We present in this paper techniques for querying and transforming such data, and illustrate their use in a prototype system developed in conjunction with the Human Genome Center for Chromosome 22. We also describe optimizations performed by the system, a crucial issue for bulk data. 1
Finding Feasible Counterexamples when Model Checking Abstracted Java Programs
 In Proceedings of TACAS
, 2001
"... . Despite recent advances in model checking and in adapting model checking techniques to software, the state explosion problem remains a major hurdle in applying model checking to software. Recent work in automated program abstraction has shown promise as a means of scaling model checking to lar ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
. Despite recent advances in model checking and in adapting model checking techniques to software, the state explosion problem remains a major hurdle in applying model checking to software. Recent work in automated program abstraction has shown promise as a means of scaling model checking to larger systems. Most common abstraction techniques compute an upper approximation of the original program. Thus, when a specification is found true for the abstracted program, it is known to be true for the original program. Finding a specification to be false, however, is inconclusive since the specification may be violated on a behavior in the abstracted program which is not present in the original program. We have extended an explicitstate model checker, Java PathFinder (JPF), to analyze counterexamples in the presence of abstractions. We enhanced JPF to search for "feasible" counterexamples during model checking. Alternatively, an abstract counterexample can be used to guide the simulation of the concrete computation and thereby check feasibility of the counterexample. We demonstrate the effectiveness of these techniques on counterexamples from checks of several multithreaded Java programs. 1