Results 1  10
of
58
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 179 (7 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
The Maximum Clique Problem
, 1999
"... Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computation ..."
Abstract

Cited by 140 (20 self)
 Add to MetaCart
Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computational Complexity 12 4 Bounds and Estimates 15 5 Exact Algorithms 19 5.1 Enumerative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Exact Algorithms for the Unweighted Case . . . . . . . . . . . . . . 21 5.3 Exact Algorithms for the Weighted Case . . . . . . . . . . . . . . . . 25 6 Heuristics 27 6.1 Sequential Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Local Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3 Advanced Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . .
Subgraph Isomorphism in Planar Graphs and Related Problems
, 1999
"... We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to ..."
Abstract

Cited by 108 (3 self)
 Add to MetaCart
We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to solve other planar graph problems including connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths.
Finding and counting given length cycles
 Algorithmica
, 1997
"... We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the graph in question, and not on the number of vertices. The bounds obtained improve upon various previ ..."
Abstract

Cited by 82 (11 self)
 Add to MetaCart
We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the graph in question, and not on the number of vertices. The bounds obtained improve upon various previously known results. 1
Planar Orientations with Low OutDegree and Compaction of Adjacency Matrices
 Theoretical Computer Science
, 1991
"... We consider the problem of orienting the edges of a planar graph in such a way that the outdegree of each vertex is minimized. If, for each vertex v, the outdegree is at most d, then we say that such an orientation is dbounded. We prove the following results: ffl Each planar graph has a 5bounde ..."
Abstract

Cited by 33 (4 self)
 Add to MetaCart
We consider the problem of orienting the edges of a planar graph in such a way that the outdegree of each vertex is minimized. If, for each vertex v, the outdegree is at most d, then we say that such an orientation is dbounded. We prove the following results: ffl Each planar graph has a 5bounded acyclic orientation, which can be constructed in linear time. ffl Each planar graph has a 3bounded orientation, which can be constructed in linear time. ffl A 6bounded acyclic orientation, and a 3bounded orientation, of each planar graph can each be constructed in parallel time O(log n log n) on an EREW PRAM, using O(n= log n log n) processors. As an application of these results, we present a data structure such that each entry in the adjacency matrix of a planar graph can be looked up in constant time. The data structure uses linear storage, and can be constructed in linear time. Department of Mathematics and Computer Science, University of California, Riverside, CA 92521. On...
New Algorithms for Enumerating All Maximal Cliques
, 2004
"... Abstract. In this paper, we consider the problems of generating all maximal (bipartite) cliques in a given (bipartite) graph G = (V, E) with n vertices and m edges. We propose two algorithms for enumerating all maximal cliques. One runs with O(M(n)) time delay and in O(n 2) space and the other runs ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
Abstract. In this paper, we consider the problems of generating all maximal (bipartite) cliques in a given (bipartite) graph G = (V, E) with n vertices and m edges. We propose two algorithms for enumerating all maximal cliques. One runs with O(M(n)) time delay and in O(n 2) space and the other runs with O( ∆ 4) time delay and in O(n + m) space, where ∆ denotes the maximum degree of G, M(n) denotes the time needed to multiply two n × n matrices, and the latter one requires O(nm) time as a preprocessing. For a given bipartite graph G, we propose three algorithms for enumerating all maximal bipartite cliques. The first algorithm runs with O(M(n)) time delay and in O(n 2) space, which immediately follows from the algorithm for the nonbipartite case. The second one runs with O( ∆ 3) time delay and in O(n + m) space, and the last one runs with O( ∆ 2) time delay and in O(n + m + N∆) space, where N denotes the number of all maximal bipartite cliques in G and both algorithms require O(nm) time as a preprocessing. Our algorithms improve upon all the existing algorithms, when G is either dense or sparse. Furthermore, computational experiments show that our algorithms for sparse graphs have significantly good performance for graphs which are generated randomly and appear in realworld problems. 1
Embedding vertices at points: Few bends suffice for planar graphs
 in Graph Drawing (Proc. GD '99), LNCS 1731
, 2002
"... The existing literature gives ecient algorithms for mapping trees or less restrictively outerplanar graphs on a given set of points in a plane, so that the edges are drawn planar and as straight lines. We relax the latter requirement and allow very few bends on each edge while considering general ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
The existing literature gives ecient algorithms for mapping trees or less restrictively outerplanar graphs on a given set of points in a plane, so that the edges are drawn planar and as straight lines. We relax the latter requirement and allow very few bends on each edge while considering general plane graphs. Our results show two algorithms for mapping fourconnected plane graphs with at most one bend per edge and for mapping general plane graphs with at most two bends per edge. Furthermore we give a point set, where for arbitrary plane graphs it is NPcomplete to decide whether there is an mapping such that each edge has at most one bend.
A Better Approximation Algorithm for Finding Planar Subgraphs
 J. ALGORITHMS
, 1996
"... The MAXIMUM PLANAR SUBGRAPH problemgiven a graph G, find a largest planar subgraph of Ghas applications in circuit layout, facility layout, and graph drawing. No previous polynomialtime approximation algorithm for this NPComplete problem was known to achieve a performance ratio larger than ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
The MAXIMUM PLANAR SUBGRAPH problemgiven a graph G, find a largest planar subgraph of Ghas applications in circuit layout, facility layout, and graph drawing. No previous polynomialtime approximation algorithm for this NPComplete problem was known to achieve a performance ratio larger than 1=3, which is achieved simply by producing a spanning tree of G. We present the first approximation algorithm for MAXIMUM PLANAR SUBGRAPH with higher performance ratio (4=9 instead of 1=3). We also apply our algorithm to find large outerplanar subgraphs. Last, we show that both MAXIMUM PLANAR SUBGRAPH and its complement, the problem of removing as few edges as possible to leave a planar subgraph, are Max SNPHard.
Confluent drawings: Visualizing NonPlanar Diagrams in a Planar Way
 GRAPH DRAWING (PROC. GD ’03), VOLUME 2912 OF LECTURE NOTES COMPUT. SCI
, 2003
"... We introduce a new approach for drawing diagrams. Our approach is to use a technique we call confluent drawing for visualizing nonplanar graphs in a planar way. This approach allows us to draw, in a crossingfree manner, graphs—such as software interaction diagrams—that would normally have many cro ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
We introduce a new approach for drawing diagrams. Our approach is to use a technique we call confluent drawing for visualizing nonplanar graphs in a planar way. This approach allows us to draw, in a crossingfree manner, graphs—such as software interaction diagrams—that would normally have many crossings. The main idea of this approach is quite simple: we allow groups of edges to be merged together and drawn as “tracks” (similar to train tracks). Producing such confluent drawings automatically from a graph with many crossings is quite challenging, however, we offer a heuristic algorithm (one version for undirected graphs and one version for directed ones) to test if a nonplanar graph can be drawn efficiently in a confluent way. In addition, we identify several large classes of graphs that can be completely categorized as being either confluently drawable or confluently nondrawable.
Arboricity and Bipartite Subgraph Listing Algorithms
, 1994
"... In graphs of bounded arboricity, the total complexity of all maximal complete bipartite subgraphs is O(n). We describe a linear time algorithm to list such subgraphs. The arboricity bound is necessary: for any constant k and any n there exists an nvertex graph with O(n) edges and (n/ log n) k ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
In graphs of bounded arboricity, the total complexity of all maximal complete bipartite subgraphs is O(n). We describe a linear time algorithm to list such subgraphs. The arboricity bound is necessary: for any constant k and any n there exists an nvertex graph with O(n) edges and (n/ log n) k maximal complete bipartite subgraphs K k,# . # Work supported in part by NSF grant CCR9258355. 1 Introduction A number of graph algorithms depend on finding all subgraphs of a certain type in a larger graph. For instance, in interval or chordal graphs, a decomposition into maximal cliques is key; such a decomposition can be constructed in linear time [4, 17]. Optimal triangulation construction [3] and certain planar graph computations [8] require a listing of all triangles. Related subgraph isomorphism problems also occur in a wide variety of practical applications [2, 5, 12, 9, 13, 14, 19]. For planar graphs, or more generally for graphs of bounded arboricity, the problem of listing c...