Results 1  10
of
52
Introduction to Algorithms, second edition
 BOOK
, 2001
"... This part will get you started in thinking about designing and analyzing algorithms.
It is intended to be a gentle introduction to how we specify algorithms, some of the
design strategies we will use throughout this book, and many of the fundamental
ideas used in algorithm analysis. Later parts of t ..."
Abstract

Cited by 707 (3 self)
 Add to MetaCart
This part will get you started in thinking about designing and analyzing algorithms.
It is intended to be a gentle introduction to how we specify algorithms, some of the
design strategies we will use throughout this book, and many of the fundamental
ideas used in algorithm analysis. Later parts of this book will build upon this base.
Chapter 1 is an overview of algorithms and their place in modern computing
systems. This chapter defines what an algorithm is and lists some examples. It also
makes a case that algorithms are a technology, just as are fast hardware, graphical
user interfaces, objectoriented systems, and networks.
In Chapter 2, we see our first algorithms, which solve the problem of sorting
a sequence of n numbers. They are written in a pseudocode which, although not
directly translatable to any conventional programming language, conveys the structure
of the algorithm clearly enough that a competent programmer can implement
it in the language of his choice. The sorting algorithms we examine are insertion
sort, which uses an incremental approach, and merge sort, which uses a recursive
technique known as “divide and conquer.” Although the time each requires increases
with the value of n, the rate of increase differs between the two algorithms.
We determine these running times in Chapter 2, and we develop a useful notation
to express them.
Chapter 3 precisely defines this notation, which we call asymptotic notation. It
starts by defining several asymptotic notations, which we use for bounding algorithm
running times from above and/or below. The rest of Chapter 3 is primarily a
presentation of mathematical notation. Its purpose is more to ensure that your use
of notation matches that in this book than to teach you new mathematical concepts.
FiniteState Transducers in Language and Speech Processing
 Computational Linguistics
, 1997
"... Finitestate machines have been used in various domains of natural language processing. We consider here the use of a type of transducers that supports very efficient programs: sequential transducers. We recall classical theorems and give new ones characterizing sequential stringtostring transducer ..."
Abstract

Cited by 308 (41 self)
 Add to MetaCart
Finitestate machines have been used in various domains of natural language processing. We consider here the use of a type of transducers that supports very efficient programs: sequential transducers. We recall classical theorems and give new ones characterizing sequential stringtostring transducers. Transducers that output weights also play an important role in language and speech processing. We give a specific study of stringtoweight transducers, including algorithms for determinizing and minimizing these transducers very efficiently, and characterizations of the transducers admitting determinization and the corresponding algorithms. Some applications of these algorithms in speech recognition are described and illustrated. 1.
Lottery and Stride Scheduling: Flexible ProportionalShare Resource Management

, 1995
"... This thesis presents flexible abstractions for specifying resource management policies, together with efficient mechanisms for implementing those abstractions. Several novel scheduling techniques are introduced, including both randomized and deterministic algorithms that provide proportionalshare c ..."
Abstract

Cited by 137 (4 self)
 Add to MetaCart
This thesis presents flexible abstractions for specifying resource management policies, together with efficient mechanisms for implementing those abstractions. Several novel scheduling techniques are introduced, including both randomized and deterministic algorithms that provide proportionalshare control over resource consumption rates. Such control is beyond the capabilities of conventional schedulers, and is desirable across a broad spectrum of systems that service clients of varying importance. Proportionalshare scheduling is examined for several diverse resources, including processor time, memory, access to locks, and disk bandwidth. Resource rights are encapsulated by abstract, firstclass objects called tickets. An active client consumes resources at a rate proportional to the number of tickets that it holds. Tickets can be issued in different amounts and may be transferred between clients. A modular currency abstraction is also introduced to flexibly name, share, and protect ...
The Eclipse Operating System: Providing Quality of Service via Reservation Domains
 IN PROCEEDINGS OF USENIX 1998 TECHNICAL CONFERENCE (NEW
, 1998
"... In this paper, we introduce a new operating system abstraction called reservation domains, and describe its implementation in Eclipse, an experimental operating system that provides a testbed for Quality of Service (QoS) support for applications. Reservation domains enable explicit control over the ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In this paper, we introduce a new operating system abstraction called reservation domains, and describe its implementation in Eclipse, an experimental operating system that provides a testbed for Quality of Service (QoS) support for applications. Reservation domains enable explicit control over the provisioning of system resources among applications in order to achieve desired levels of predictable performance. In general, each reservation domain is assigned a certain fraction of each resource (e.g., 25% CPU, 50% disk I/O, etc.). Eclipse implements reservationdomain scheduling of multiple resources. It currently supports CPU and disk and physical memory (working set size) scheduling. Eclipse implements a new scheduling algorithm, MovetoRear List Scheduling (MTRLS), that provides a cumulative service guarantee, in addition to fairness and delay bounds. Cumulative service guarantee is necessary for ensuring predictable aggregate throughput for applications that require multiple res...
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Marked Ancestor Problems
, 1998
"... Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the wellknown predecessor problem, where the tree is a path. ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the wellknown predecessor problem, where the tree is a path.
O(N) Implementation of the Fast Marching Algorithm
 Journal of Computational Physics
, 2005
"... In this note we present an implementation of the fast marching algorithm for solving Eikonal equations that reduces the original runtime from O(N log N) to linear. This lower runtime cost is obtained while keeping an error bound of the same order of magnitude as the original algorithm. This improv ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
In this note we present an implementation of the fast marching algorithm for solving Eikonal equations that reduces the original runtime from O(N log N) to linear. This lower runtime cost is obtained while keeping an error bound of the same order of magnitude as the original algorithm. This improvement is achieved introducing the straight forward untidy priority queue, obtained via a quantization of the priorities in the marching computation. We present the underlying framework, estimations on the error, and examples showing the usefulness of the proposed approach. Key words: Fast marching, HamiltonJacobi and Eikonal equations, distance functions, bucket sort, untidy priority queue.
Undirected Single Source Shortest Paths in Linear Time
 J. Assoc. Comput. Mach
, 1997
"... The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra' ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra's algorithm, visiting the vertices in order of increasing distance from s. Thus, any implementation of Dijkstra 's algorithm sorts the vertices according to their distances from s. However, we do not know how to sort in linear time. Here, a deterministic linear time and linear space algorithm is presented for the undirected single source shortest paths problem with integer weights. The algorithm avoids the sorting bottleneck by building a hierechical bucketing structure, identifying vertex pairs that may be visited in any order. 1 Introduction Let G = (V; E), jV j = n, jEj = m, be an undirected connected graph with an integer edge weight function ` : E ! N and a distinguished source vertex...
Improved Parallel Integer Sorting without Concurrent Writing
, 1992
"... We show that n integers in the range 1 : : n can be sorted stably on an EREW PRAM using O(t) time and O(n( p log n log log n + (log n) 2 =t)) operations, for arbitrary given t log n log log n, and on a CREW PRAM using O(t) time and O(n( p log n + log n=2 t=logn )) operations, for arbitrary ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
We show that n integers in the range 1 : : n can be sorted stably on an EREW PRAM using O(t) time and O(n( p log n log log n + (log n) 2 =t)) operations, for arbitrary given t log n log log n, and on a CREW PRAM using O(t) time and O(n( p log n + log n=2 t=logn )) operations, for arbitrary given t log n. In addition, we are able to sort n arbitrary integers on a randomized CREW PRAM within the same resource bounds with high probability. In each case our algorithm is a factor of almost \Theta( p log n) closer to optimality than all previous algorithms for the stated problem in the stated model, and our third result matches the operation count of the best previous sequential algorithm. We also show that n integers in the range 1 : : m can be sorted in O((log n) 2 ) time with O(n) operations on an EREW PRAM using a nonstandard word length of O(log n log log n log m) bits, thereby greatly improving the upper bound on the word length necessary to sort integers with a linear t...
Faster Deterministic Sorting and Searching in Linear Space
, 1995
"... We present a significant improvement on linear space deterministic sorting and searching. On a unitcost RAM with word size w, an ordered set of n wbit keys (viewed as binary strings or integers) can be maintained in O ` min ` p log n; log n log w + log log n; log w log log n " time per op ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
We present a significant improvement on linear space deterministic sorting and searching. On a unitcost RAM with word size w, an ordered set of n wbit keys (viewed as binary strings or integers) can be maintained in O ` min ` p log n; log n log w + log log n; log w log log n " time per operation, including insert, delete, member search, and neighbour search. The cost for searching is worstcase while the cost for updates is amortized. For range queries, there is an additional cost of reporting the found keys. As an application, n keys can be sorted in linear space at a worstcase cost of O \Gamma n p log n \Delta . The best previous method for deterministic sorting and searching in linear space has been the fusion trees which supports queries in O(logn= log log n) amortized time and sorting in O(n log n= log log n) worstcase time. We also make two minor observations on adapting our data structure to the input distribution and on the complexity of perfect hashing. 1 I...