Results 1 
2 of
2
A New Paradox in Type Theory
 Logic, Methodology and Philosophy of Science IX : Proceedings of the Ninth International Congress of Logic, Methodology, and Philosophy of Science
, 1994
"... this paper is to present a new paradox for Type Theory, which is a typetheoretic refinement of Reynolds' result [24] that there is no settheoretic model of polymorphism. We discuss then one application of this paradox, which shows unexpected connections between the principle of excluded middle and ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
this paper is to present a new paradox for Type Theory, which is a typetheoretic refinement of Reynolds' result [24] that there is no settheoretic model of polymorphism. We discuss then one application of this paradox, which shows unexpected connections between the principle of excluded middle and the axiom of description in impredicative Type Theories. 1 Minimal and Polymorphic HigherOrder Logic
The Calculus of Constructions and Higher Order Logic
 In preparation
, 1992
"... The Calculus of Constructions (CC) ([Coquand 1985]) is a typed lambda calculus for higher order intuitionistic logic: proofs of the higher order logic are interpreted as lambda terms and formulas as types. It is also the union of Girard's system F! ([Girard 1972]), a higher order typed lambda calcul ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The Calculus of Constructions (CC) ([Coquand 1985]) is a typed lambda calculus for higher order intuitionistic logic: proofs of the higher order logic are interpreted as lambda terms and formulas as types. It is also the union of Girard's system F! ([Girard 1972]), a higher order typed lambda calculus, and a first order dependent typed lambda calculus in the style of de Bruijn's Automath ([de Bruijn 1980]) or MartinLof's intuitionistic theory of types ([MartinLof 1984]). Using the impredicative coding of data types in F! , the Calculus of Constructions thus becomes a higher order language for the typing of functional programs. We shall introduce and try to explain CC by exploiting especially the first point of view, by introducing a typed lambda calculus that faithfully represent higher order predicate logic (so for this system the CurryHoward `formulasastypes isomorphism' is really an isomorphism.) Then we discuss some propositions that are provable in CC but not in the higher or...