Results 1 
2 of
2
Typability and Type Checking in System F Are Equivalent and Undecidable
 Annals of Pure and Applied Logic
, 1998
"... Girard and Reynolds independently invented System F (a.k.a. the secondorder polymorphically typed lambda calculus) to handle problems in logic and computer programming language design, respectively. Viewing F in the Curry style, which associates types with untyped lambda terms, raises the questions ..."
Abstract

Cited by 58 (4 self)
 Add to MetaCart
Girard and Reynolds independently invented System F (a.k.a. the secondorder polymorphically typed lambda calculus) to handle problems in logic and computer programming language design, respectively. Viewing F in the Curry style, which associates types with untyped lambda terms, raises the questions of typability and type checking . Typability asks for a term whether there exists some type it can be given. Type checking asks, for a particular term and type, whether the term can be given that type. The decidability of these problems has been settled for restrictions and extensions of F and related systems and complexity lowerbounds have been determined for typability in F, but this report is the rst to resolve whether these problems are decidable for System F. This report proves that type checking in F is undecidable, by a reduction from semiuni cation, and that typability in F is undecidable, by a reduction from type checking. Because there is an easy reduction from typability to typ...
Typability is undecidable for F+eta
, 1995
"... System F is the wellknown polymorphicallytypedcalculus with universal quanti ers (\8"). F+ is System F extended with the eta rule, which says that if term M can be given type and Mreduces to N, then N can also be given the type. Adding the eta rule to System F is equivalent to adding the subsump ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
System F is the wellknown polymorphicallytypedcalculus with universal quanti ers (\8"). F+ is System F extended with the eta rule, which says that if term M can be given type and Mreduces to N, then N can also be given the type. Adding the eta rule to System F is equivalent to adding the subsumption rule using the subtyping (\containment") relation that Mitchell de ned and axiomatized [Mit88]. The subsumption rule says that if M can be given type and is a subtype of type,thenMcan be given type. Mitchell's subtyping relation involves no extensions to the syntaxoftypes, i.e., no bounded polymorphism and no supertype of all types, and is thus unrelated to the system F (\Fsub"). Typability for F+ is the problem of determining for any termMwhether there is any type that can be given to it using the type inference rules of F+. Typability has been proven undecidable for System F [Wel94] (without the eta rule), but the decidability oftypability has been an open problem for F+. Mitchell's subtyping relation has recently been proven undecidable [TU95, Wel95b], implying the undecidability of\type checking " for F+. This paper reduces the problem of subtyping to the problem of typability for F+,thus proving the undecidability oftypability. The proof methods are similar in outline to those used to prove the undecidability oftypability for System F, but the ne details di er greatly. 1