Results 1 
2 of
2
Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance
 In Bayesian Statistics 5
, 1995
"... Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significanc ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significance tests to select a single model, and then to make inference conditionally on the selected model. However, this ignores model uncertainty, which can be substantial. We review the standard Bayesian model averaging solution to this problem and extend it to survival analysis, introducing partial Bayes factors to do so for the Cox proportional hazards model. In two examples, taking account of model uncertainty enhances predictive performance, to an extent that could be clinically useful. 1 Introduction From 1974 to 1984 the Mayo Clinic conducted a doubleblinded randomized clinical trial involving 312 patients to compare the drug DPCA with a placebo in the treatment of primary biliary cirrhosis...
Bayesian information criterion for censored survival models
 Biometrics
"... We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995) showed that BIC provides a close approximation to the Bayes factor when a unitinformation prior on the parameter space is used. We propose a revision of the ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995) showed that BIC provides a close approximation to the Bayes factor when a unitinformation prior on the parameter space is used. We propose a revision of the penalty term in BIC so that it is de ned in terms of the number of uncensored events instead of the number of observations. For the simplest censored data model, that of exponential distributions of survival times (i.e. a constant hazard rate), this revision results in a better approximation to the exact Bayes factor based on a conjugate unitinformation prior. In the Cox proportional hazards regression model, we propose de ning BIC in terms of the maximized partial likelihood. Using the number of deaths rather than the number of individuals in the BIC penalty term corresponds to a more realistic prior on the parameter space, and is shown to improve predictive performance for assessing stroke risk in the Cardiovascular Health Study.