Results 1 
7 of
7
Metatheory and Reflection in Theorem Proving: A Survey and Critique
, 1995
"... One way to ensure correctness of the inference performed by computer theorem provers is to force all proofs to be done step by step in a simple, more or less traditional, deductive system. Using techniques pioneered in Edinburgh LCF, this can be made palatable. However, some believe such an appro ..."
Abstract

Cited by 53 (2 self)
 Add to MetaCart
One way to ensure correctness of the inference performed by computer theorem provers is to force all proofs to be done step by step in a simple, more or less traditional, deductive system. Using techniques pioneered in Edinburgh LCF, this can be made palatable. However, some believe such an approach will never be efficient enough for large, complex proofs. One alternative, commonly called reflection, is to analyze proofs using a second layer of logic, a metalogic, and so justify abbreviating or simplifying proofs, making the kinds of shortcuts humans often do or appealing to specialized decision algorithms. In this paper we contrast the fullyexpansive LCF approach with the use of reflection. We put forward arguments to suggest that the inadequacy of the LCF approach has not been adequately demonstrated, and neither has the practical utility of reflection (notwithstanding its undoubted intellectual interest). The LCF system with which we are most concerned is the HOL proof ...
The BoyerMoore Theorem Prover and Its Interactive Enhancement
, 1995
"... . The socalled "BoyerMoore Theorem Prover" (otherwise known as "Nqthm") has been used to perform a variety of verification tasks for two decades. We give an overview of both this system and an interactive enhancement of it, "PcNqthm," from a number of perspectives. First we introduce the logic in ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
. The socalled "BoyerMoore Theorem Prover" (otherwise known as "Nqthm") has been used to perform a variety of verification tasks for two decades. We give an overview of both this system and an interactive enhancement of it, "PcNqthm," from a number of perspectives. First we introduce the logic in which theorems are proved. Then we briefly describe the two mechanized theorem proving systems. Next, we present a simple but illustrative example in some detail in order to give an impression of how these systems may be used successfully. Finally, we give extremely short descriptions of a large number of applications of these systems, in order to give an idea of the breadth of their uses. This paper is intended as an informal introduction to systems that have been described in detail and similarly summarized in many other books and papers; no new results are reported here. Our intention here is merely to present Nqthm to a new audience. This research was supported in part by ONR Contract N...
A Theorem Prover for a Computational Logic
, 1990
"... We briefly review a mechanical theoremprover for a logic of recursive functions over finitely generated objects including the integers, ordered pairs, and symbols. The prover, known both as NQTHM and as the BoyerMoore prover, contains a mechanized principle of induction and implementations of line ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
We briefly review a mechanical theoremprover for a logic of recursive functions over finitely generated objects including the integers, ordered pairs, and symbols. The prover, known both as NQTHM and as the BoyerMoore prover, contains a mechanized principle of induction and implementations of linear resolution, rewriting, and arithmetic decision procedures. We describe some applications of the prover, including a proof of the correct implementation of a higher level language on a microprocessor defined at the gate level. We also describe the ongoing project of recoding the entire prover as an applicative function within its own logic.
A mechanical proof of the unsolvability of the halting problem
 JACM
, 1984
"... We describe a proof by a computer program of the unsolvability of the halting problem. The halting problem is posed in a constructive, formal language. The computational paradigm formalized is Pure LISP, not Turing machines. The machine was led to the proof by the authors, who suggested certain func ..."
Abstract

Cited by 15 (8 self)
 Add to MetaCart
We describe a proof by a computer program of the unsolvability of the halting problem. The halting problem is posed in a constructive, formal language. The computational paradigm formalized is Pure LISP, not Turing machines. The machine was led to the proof by the authors, who suggested certain function definitions and stated certain intermediate lemmas. The machine checked that every suggested definition was admissible and the machine proved the main theorem and every lemma. We believe this is the first instance of a machine checking that a given problem is not solvable by machine.
Proof Theory of MartinLof Type Theory  An
 Mathematiques et Sciences Humaines, 42 année, n o 165:59 – 99
, 2004
"... We give an overview over the historic development of proof theory and the main techniques used in ordinal theoretic proof theory. We argue, that in a revised Hilbert's programme, ordinal theoretic proof theory has to be supplemented by a second step, namely the development of strong equiconsisten ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We give an overview over the historic development of proof theory and the main techniques used in ordinal theoretic proof theory. We argue, that in a revised Hilbert's programme, ordinal theoretic proof theory has to be supplemented by a second step, namely the development of strong equiconsistent constructive theories. Then we show, how, as part of such a programme, the proof theoretic analysis of MartinLof type theory with Wtype and one microscopic universe containing only two finite sets is carried out. Then we look at the analysis of MartinLof type theory with Wtype and a universe closed under the Wtype, and consider the extension of type theory by one Mahlo universe and its prooftheoretic analysis. Finally we repeat the concept of inductiverecursive definitions, which extends the notion of inductive definitions substantially. We introduce a closed formalisation, which can be used in generic programming, and explain, what is known about its strength.
NonConstructive Computational Mathematics
 Journal of Automated Reasoning
, 1995
"... We describe a nonconstructive extension to Primitive Recursive Arithmetic, both abstractly, and as implemented on the BoyerMoore prover. Abstractly, this extension is obtained by adding the unbounded ¯ operator applied to primitive recursive functions; doing so, one can define the Ackermann functi ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We describe a nonconstructive extension to Primitive Recursive Arithmetic, both abstractly, and as implemented on the BoyerMoore prover. Abstractly, this extension is obtained by adding the unbounded ¯ operator applied to primitive recursive functions; doing so, one can define the Ackermann function and prove the consistency of Primitive Recursive Arithmetic. The implementation does not mention the ¯ operator explicitly, but has the strength to define the ¯ operator through the builtin functions EVAL$ and V&C$. x1. INTRODUCTION This paper is a mixture of theory and practice. The theory begins with the notions of constructivism and finitism in the philosophy of mathematics. As with all philosophical notions, these cannot appear directly in a mathematical theorem or a computer program, but they have been useful guides over the past hundred years to discovering mathematical results, and more recently, to designing computer implementations. Informally, a constructivist only believes in...