Results 1  10
of
79
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years ea ..."
Abstract

Cited by 66 (11 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Equilogical Spaces
, 1998
"... It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relation ..."
Abstract

Cited by 41 (12 self)
 Add to MetaCart
It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relations) can be applied to other structures as well. In particular, we can easily dene the category of ERs and equivalencepreserving continuous mappings over the standard category Top 0 of topological T 0 spaces; we call these spaces (a topological space together with an ER) equilogical spaces and the resulting category Equ. We show that this categoryin contradistinction to Top 0 is a cartesian closed category. The direct proof outlined here uses the equivalence of the category Equ to the category PEqu of PERs over algebraic lattices (a full subcategory of Top 0 that is well known to be cartesian closed from domain theory). In another paper with Carboni and Rosolini (cited herein) a more abstract categorical generalization shows why many such categories are cartesian closed. The category Equ obviously contains Top 0 as a full subcategory, and it naturally contains many other well known subcategories. In particular, we show why, as a consequence of work of Ershov, Berger, and others, the KleeneKreisel hierarchy of countable functionals of nite types can be naturally constructed in Equ from the natural numbers object N by repeated use in Equ of exponentiation and binary products. We also develop for Equ notions of modest sets (a category equivalent to Equ) and assemblies to explain why a model of dependent type theory is obtained. We make some comparisons of this model to other, known models. 1
Developing Theories of Types and Computability via Realizability
, 2000
"... We investigate the development of theories of types and computability via realizability. ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
(Show Context)
We investigate the development of theories of types and computability via realizability.
A Uniform Approach to Domain Theory in Realizability Models
 Mathematical Structures in Computer Science
, 1996
"... this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability&quo ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies and modest sets. Next, in Section 4, we prepare for our development of domain theory with an analysis of nontermination. Previous approaches have used (relatively complicated) categorical formulations of partial maps for this purpose. Instead, motivated by the idea that A provides a primitive programming language, we consider a simple notion of "diverging" computation within A itself. This leads to a theory of divergences from which a notion of (computable) partial function is derived together with a lift monad classifying partial functions. The next task is to isolate a subcategory of modest sets with sufficient structure for supporting analogues of the usual domaintheoretic constructions. First, we expect to be able to interpret the standard constructions of total type theory in this category, so it should inherit cartesianclosure, coproducts and the natural numbers from modest sets. Second, it should interact well with the notion of partiality, so it should be closed under application of the lift functor. Third, it should allow the recursive definition of partial functions. This is achieved by obtaining a fixpoint object in the category, as defined in (Crole and Pitts 1992). Finally, although there is in principle no definitive list of requirements on such a category, one would like it to support more complicated constructions such as those required to interpret polymorphic and recursive types. The central part of the paper (Sections 5, 6, 7 and 9) is devoted to establish...
A Relationship between Equilogical Spaces and Type Two Effectivity
"... In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both locally cartesian closed extensions of countably based T 0 spaces. A natural question to ask is how they are related.
Exact Completions and Toposes
 University of Edinburgh
, 2000
"... Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
(Show Context)
Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding &quot;good &quot; quotients of equivalence relations to a simple category with finite limits. This construction is called the exact completion of the original category. Exact completions are not always toposes and it was not known, not even in the realizability and presheaf cases, when or why toposes arise in this way. Exact completions can be obtained as the composition of two related constructions. The first one assigns to a category with finite limits, the &quot;best &quot; regular category (called its regular completion) that embeds it. The second assigns to
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
(Show Context)
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.