Results 1  10
of
123
Domain theory for concurrency
, 2003
"... Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey.
Étale groupoids and their quantales
, 2004
"... We establish a close and previously unknown relation between quantales and groupoids, in terms of which the notion of étale groupoid is subsumed in a natural way by that of quantale. In particular, to each étale groupoid, either localic or topological, there is associated a unital involutive quantal ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
We establish a close and previously unknown relation between quantales and groupoids, in terms of which the notion of étale groupoid is subsumed in a natural way by that of quantale. In particular, to each étale groupoid, either localic or topological, there is associated a unital involutive quantale. We obtain a bijective correspondence between localic étale groupoids and their quantales, which are given a rather simple characterization and are here called inverse quantal
A Dependent Type Theory with Names and Binding
 In Proceedings of the 2004 Computer Science Logic Conference, number 3210 in Lecture notes in Computer Science
, 2004
"... We consider the problem of providing formal support for working with abstract syntax involving variable binders. Gabbay and Pitts have shown in their work on FraenkelMostowski (FM) set theory how to address this through firstclass names: in this paper we present a dependent type theory for prog ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
We consider the problem of providing formal support for working with abstract syntax involving variable binders. Gabbay and Pitts have shown in their work on FraenkelMostowski (FM) set theory how to address this through firstclass names: in this paper we present a dependent type theory for programming and reasoning with such names. Our development is based on a categorical axiomatisation of names, with freshness as its central notion. An associated adjunction captures constructions known from FM theory: the freshness quantifier N , namebinding, and unique choice of fresh names. The Schanuel topos  the category underlying FM set theory  is an instance of this axiomatisation.
Higher gauge theory I: 2Bundles
 University of California Riverside
"... Stevenson for helpful discussion about covers. And of course I thank John Baez for all of the above, as well as inspiration, guidance, and encouragement. iv Abstract of the Dissertation ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Stevenson for helpful discussion about covers. And of course I thank John Baez for all of the above, as well as inspiration, guidance, and encouragement. iv Abstract of the Dissertation
A topos foundation for theories of physics: I. Formal languages for physics
, 2007
"... This paper is the first in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a th ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
This paper is the first in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper we discuss two different types of language that can be attached to a system, S. The first is a propositional language, PL(S); the second is a higherorder, typed language L(S). Both languages provide deductive systems with an intuitionistic logic. The reason for introducing PL(S) is that, as shown in paper II of the series, it is the easiest way of understanding, and expanding on, the earlier work on topos theory and quantum physics. However, the main thrust of our programme utilises the more powerful language L(S) and its representation in an appropriate topos.
Quantum logic in dagger kernel categories
 Order
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract

Cited by 9 (9 self)
 Add to MetaCart
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical/ordertheoretic properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, orthomodularity, atomicity and completeness. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1
Higher gauge theory
"... I categorify the definition of fibre bundle, replacing smooth manifolds with differentiable categories, Lie groups with coherent Lie 2groups, and bundles with a suitable notion of 2bundle. To link this with previous work, I show that certain 2categories of principal 2bundles are equivalent to ce ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
I categorify the definition of fibre bundle, replacing smooth manifolds with differentiable categories, Lie groups with coherent Lie 2groups, and bundles with a suitable notion of 2bundle. To link this with previous work, I show that certain 2categories of principal 2bundles are equivalent to certain 2categories of (nonabelian) gerbes. This relationship can be (and has been) extended to connections on 2bundles and gerbes. The main theorem, from a perspective internal to this paper, is that the 2category of 2bundles over a given 2space under a given 2group is (up to equivalence) independent of the fibre and can be expressed in terms of cohomological data (called 2transitions). From the perspective of linking to previous work on gerbes, the main theorem is that when the 2space is the 2space corresponding to a given space and the 2group is the automorphism 2group of a given group, then this 2category is equivalent to the 2category of gerbes over that space under that group (being described by the same cohomological data).
Mathematical models of computational and combinatorial structures. Invited address for Foundations
 of Software Science and Computation Structures (FOSSACS 2005
, 2005
"... Abstract. The general aim of this talk is to advocate a combinatorial perspective, together with its methods, in the investigation and study of models of computation structures. This, of course, should be taken in conjunction with the wellestablished views and methods stemming from algebra, category ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
Abstract. The general aim of this talk is to advocate a combinatorial perspective, together with its methods, in the investigation and study of models of computation structures. This, of course, should be taken in conjunction with the wellestablished views and methods stemming from algebra, category theory, domain theory, logic, type theory, etc. In support of this proposal I will show how such an approach leads to interesting connections between various areas of computer science and mathematics; concentrating on one such example in some detail. Specifically, I will consider the line of my research involving denotational models of the pi calculus and algebraic theories with variablebinding operators, indicating how the abstract mathematical structure underlying these models fits with that of Joyal’s combinatorial species of structures. This analysis suggests both the unification and generalisation of models, and in the latter vein I will introduce generalised species of structures and their calculus. These generalised species encompass and generalise various of the notions of species used in combinatorics. Furthermore, they have a rich mathematical structure (akin to models of Girard’s linear logic) that can be described purely within Lawvere’s generalised logic. Indeed, I will present and treat the cartesian closed structure, the linear structure, the differential structure, etc. of generalised species axiomatically in this mathematical framework. As an upshot, I will observe that the setting allows for interpretations of computational calculi (like the lambda calculus, both typed and untyped; the recently introduced differential lambda calculus of Ehrhard and Regnier; etc.) that can be directly seen as translations into a more basic elementary calculus of interacting agents that compute by communicating and operating upon structured data.
Convenient Categories of Smooth Spaces
, 2008
"... A ‘Chen space ’ is a set X equipped with a collection of ‘plots ’ — maps from convex sets to X — satisfying three simple axioms. While an individual ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
A ‘Chen space ’ is a set X equipped with a collection of ‘plots ’ — maps from convex sets to X — satisfying three simple axioms. While an individual
A Topos for Algebraic Quantum Theory
 COMMUNICATIONS IN MATHEMATICAL PHYSICS
, 2009
"... The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*algebra of observables A induces a topos T (A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*algebra A. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum �(A) in T (A), which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topostheoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on �, and selfadjoint elements of A define continuous functions (more precisely, locale maps) from � to Scott’s interval domain. Noting that open subsets of �(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T (A). These results were inspired by the topostheoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.