Results 1 
3 of
3
Syntax and Semantics of Dependent Types
 Semantics and Logics of Computation
, 1997
"... ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe is written Set instead of U . The Eloperator is omitted. For example the \Pitype is described by the following constant and equality declarations (understood in every valid context): ` \Pi : (oe: Set; : (oe)Set)Set ` App : (oe: Set; : (oe)Set; m: \Pi(oe; ); n: oe) (m) ` : (oe: Set; : (oe)Set; m: (x: oe) (x))\Pi(oe; ) oe: Set; : (oe)Set; m: (x: oe) (x); n: oe ` App(oe; ; (oe; ; m); n) = m(n) Notice, how terms with free variables are represented as framework abstractions (in the type of ) and how substitution is represented as framework application (in the type of App and in the equation). In this way the burden of dealing correctly with variables, substitution, and binding is s...
On the Interpretation of Type Theory in Locally Cartesian Closed Categories
 Proceedings of Computer Science Logic, Lecture Notes in Computer Science
, 1994
"... . We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of exten ..."
Abstract

Cited by 38 (1 self)
 Add to MetaCart
. We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory. 1 Introduction and Motivation Interpreting dependent type theory in locally cartesian closed categories (lcccs) and more generally in (non split) fibrational models like the ones described in [7] is an intricate problem. The reason is that in order to interpret terms associated with substitution like pairing for \Sigma types or application for \Pitypes one needs a semantical equivalent to syntactic substitution. To clarify the issue let us have a look at the "naive" approach described in Seely's seminal paper [14] which contains a subtle inaccuracy. Assume some dependently typed calculus like the one defined in [10] and an lccc C (a category ...
A Simple Model for Quotient Types
 Proceedings of TLCA'95, volume 902 of Lecture Notes in Computer Science
, 1995
"... . We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In excha ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
. We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In exchange, the model is much simpler and more intuitive than the one proposed by the author in [10]. Moreover, we interpret a choice operator for quotient types that, under certain restrictions, allows one to recover a representative from an equivalence class. Since the model is constructed syntactically, the interpretation function from the syntax with quotient types to the model gives rise to a procedure which eliminates quotient types by replacing propositional equality by equality relations defined by induction on the type structure ("book equalities"). 1 Introduction Intensional type theories like the Calculus of Constructions have been proposed as a framework in which to formalise mathemati...