Results 1  10
of
51
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
ECC, an Extended Calculus of Constructions
, 1989
"... We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics ..."
Abstract

Cited by 84 (4 self)
 Add to MetaCart
We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics may be adequately formalized. It is shown that ECC is strongly normalizing and has other nice prooftheoretic properties. An !\GammaSet (realizability) model is described to show how the essential properties of the calculus can be captured settheoretically.
On the Interpretation of Type Theory in Locally Cartesian Closed Categories
 Proceedings of Computer Science Logic, Lecture Notes in Computer Science
, 1994
"... . We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of exten ..."
Abstract

Cited by 38 (1 self)
 Add to MetaCart
. We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory. 1 Introduction and Motivation Interpreting dependent type theory in locally cartesian closed categories (lcccs) and more generally in (non split) fibrational models like the ones described in [7] is an intricate problem. The reason is that in order to interpret terms associated with substitution like pairing for \Sigma types or application for \Pitypes one needs a semantical equivalent to syntactic substitution. To clarify the issue let us have a look at the "naive" approach described in Seely's seminal paper [14] which contains a subtle inaccuracy. Assume some dependently typed calculus like the one defined in [10] and an lccc C (a category ...
Internal Type Theory
 Lecture Notes in Computer Science
, 1996
"... . We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with f ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
. We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with families formally in MartinLof's intensional intuitionistic type theory. Finally, we discuss the coherence problem for these internal categories with families. 1 Introduction In a previous paper [8] I introduced a general notion of simultaneous inductiverecursive definition in intuitionistic type theory. This notion subsumes various reflection principles and seems to pave the way for a natural development of what could be called "internal type theory", that is, the construction of models of (fragments of) type theory in type theory, and more generally, the formalization of the metatheory of type theory in type theory. The present paper is a first investigation of such an internal type theor...
Equilogical Spaces
, 1998
"... It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relation ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relations) can be applied to other structures as well. In particular, we can easily dene the category of ERs and equivalencepreserving continuous mappings over the standard category Top 0 of topological T 0 spaces; we call these spaces (a topological space together with an ER) equilogical spaces and the resulting category Equ. We show that this categoryin contradistinction to Top 0 is a cartesian closed category. The direct proof outlined here uses the equivalence of the category Equ to the category PEqu of PERs over algebraic lattices (a full subcategory of Top 0 that is well known to be cartesian closed from domain theory). In another paper with Carboni and Rosolini (cited herein) a more abstract categorical generalization shows why many such categories are cartesian closed. The category Equ obviously contains Top 0 as a full subcategory, and it naturally contains many other well known subcategories. In particular, we show why, as a consequence of work of Ershov, Berger, and others, the KleeneKreisel hierarchy of countable functionals of nite types can be naturally constructed in Equ from the natural numbers object N by repeated use in Equ of exponentiation and binary products. We also develop for Equ notions of modest sets (a category equivalent to Equ) and assemblies to explain why a model of dependent type theory is obtained. We make some comparisons of this model to other, known models. 1
Inductionrecursion and initial algebras
 Annals of Pure and Applied Logic
, 2003
"... 1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition of a universe `a la T ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition of a universe `a la Tarski [19], which consists of a set U
A CategoryTheoretic Account of Program Modules
 Mathematical Structures in Computer Science
, 1994
"... The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as inde ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as indexed categories" and illustrates how ML can be extended to support higher order modules, by developing a categorytheoretic semantics for a calculus of modules with dependent types. The paper outlines also a methodology, which may lead to a modular approach in the study of programming languages. Introduction The addition of module facilities to programming languages is motivated by the need to provide a better environment for the development and maintenance of large programs. Nowadays many programming languages include such facilities. Throughout the paper Standard ML (see [Mac85, HMM86, MTH90]) is taken as representative for these languages. The implementation of module facilities has been ...
Developing Theories of Types and Computability via Realizability
, 2000
"... We investigate the development of theories of types and computability via realizability. ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
We investigate the development of theories of types and computability via realizability.
A Simple Model for Quotient Types
 Proceedings of TLCA'95, volume 902 of Lecture Notes in Computer Science
, 1995
"... . We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In excha ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
. We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In exchange, the model is much simpler and more intuitive than the one proposed by the author in [10]. Moreover, we interpret a choice operator for quotient types that, under certain restrictions, allows one to recover a representative from an equivalence class. Since the model is constructed syntactically, the interpretation function from the syntax with quotient types to the model gives rise to a procedure which eliminates quotient types by replacing propositional equality by equality relations defined by induction on the type structure ("book equalities"). 1 Introduction Intensional type theories like the Calculus of Constructions have been proposed as a framework in which to formalise mathemati...
Extracting a Proof of Coherence for Monoidal Categories from a Proof of Normalization for Monoids
 In TYPES
, 1995
"... . This paper studies the problem of coherence in category theory from a typetheoretic viewpoint. We first show how a CurryHoward interpretation of a formal proof of normalization for monoids almost directly yields a coherence proof for monoidal categories. Then we formalize this coherence proof in ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
. This paper studies the problem of coherence in category theory from a typetheoretic viewpoint. We first show how a CurryHoward interpretation of a formal proof of normalization for monoids almost directly yields a coherence proof for monoidal categories. Then we formalize this coherence proof in intensional intuitionistic type theory and show how it relies on explicit reasoning about proof objects for intensional equality. This formalization has been checked in the proof assistant ALF. 1 Introduction Mac Lane [18, pp.161165] proved a coherence theorem for monoidal categories. A basic ingredient in his proof is the normalization of object expressions. But it is only one ingredient and several others are needed too. Here we show that almost a whole proof of this coherence theorem is hidden in a CurryHoward interpretation of a proof of normalization for monoids. The second point of the paper is to contribute to the development of constructive category theory in the sense of Huet a...