Results 1 
1 of
1
Controling the Magnification Factor of SelfOrganizing Feature Maps
, 1995
"... The magnification exponents ¯ occuring in adaptive map formation algorithms like Kohonen's selforganizing feature map deviate for the information theoretically optimal value ¯ = 1 as well as from the values which optimize, e.g., the mean square distortion error (¯ = 1=3 for onedimensional maps). A ..."
Abstract

Cited by 41 (7 self)
 Add to MetaCart
The magnification exponents ¯ occuring in adaptive map formation algorithms like Kohonen's selforganizing feature map deviate for the information theoretically optimal value ¯ = 1 as well as from the values which optimize, e.g., the mean square distortion error (¯ = 1=3 for onedimensional maps). At the same time, models for categorical perception such as the "perceptual magnet" effect which are based on topographic maps require negative magnification exponents ¯ ! 0. We present an extension of the selforganizing feature map algorithm which utilizes adaptive local learning step sizes to actually control the magnification properties of the map. By change of a single parameter, maps with optimal information transfer, with various minimal reconstruction errors, or with an inverted magnification can be generated. Analytic results on this new algorithm are complemented by numerical simulations. 1. Introduction The representation of information in topographic maps is a common property of...