Results 1 
3 of
3
Markov chain monte carlo convergence diagnostics
 JASA
, 1996
"... A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise ..."
Abstract

Cited by 274 (6 self)
 Add to MetaCart
A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise for the future but currently has yielded relatively little that is of practical use in applied work. Consequently, most MCMC users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. After giving a brief overview of the area, we provide an expository review of thirteen convergence diagnostics, describing the theoretical basis and practical implementation of each. We then compare their performance in two simple models and conclude that all the methods can fail to detect the sorts of convergence failure they were designed to identify. We thus recommend a combination of strategies aimed at evaluating and accelerating MCMC sampler convergence, including applying diagnostic procedures to a small number of parallel chains, monitoring autocorrelations and crosscorrelations, and modifying parameterizations or sampling algorithms appropriately. We emphasize, however, that it is not possible to say with certainty that a finite sample from an MCMC algorithm is representative of an underlying stationary distribution. 1
Strategies for speeding Markov chain Monte Carlo algorithms
, 2000
"... Markov chain Monte Carlo (MCMC) methods have become popular as a basis for drawing inference from complex statistical models. Two common difficulties with MCMC algorithms are slow convergence and long runtimes, which are often closely related. Algorithm convergence can often be aided by careful tun ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Markov chain Monte Carlo (MCMC) methods have become popular as a basis for drawing inference from complex statistical models. Two common difficulties with MCMC algorithms are slow convergence and long runtimes, which are often closely related. Algorithm convergence can often be aided by careful tuning of the chain's transition kernel. In order to preserve the algorithm's stationary distribution, however, care must be taken when updating a chain's transition kernel based on that same chain's history. In this paper we introduce a technique that allows the transition kernel to be updated at user specified intervals, while preserving the chain's stationary distribution. This technique may be beneficial in aiding both the rate of convergence (by allowing adaptation of the transition kernel) and the speed of computing. The approach is particularly helpful when calculation of the full conditional (for a Gibbs algorithm) or of the candidate distribution (for a MetropolisHastings algorithm) i...
Abstract Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review
"... A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise ..."
Abstract
 Add to MetaCart
A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise for the future but currently has yielded relatively little that is of practical use in applied work. Consequently, most MCMC users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. After giving a brief overview of the area, we provide an expository review of thirteen convergence diagnostics, describing the theoretical basis and practical implementation of each. We then compare their performance in two simple models and conclude that all the methods can fail to detect the sorts of convergence failure they were designed to identify. We thus recommend a combination of strategies aimed at evaluating and accelerating MCMC sampler convergence, including applying diagnostic procedures to a small number of parallel chains, monitoring autocorrelations and crosscorrelations, and modifying parameterizations or sampling algorithms appropriately. We emphasize, however, that it is not possible to say with certainty that a finite sample from an MCMC algorithm is representative of an underlying stationary distribution.