Results 1 
2 of
2
Fusion of Recursive Programs with Computational Effects
 Theor. Comp. Sci
, 2000
"... Fusion laws permit to eliminate various of the intermediate data structures that are created in function compositions. The fusion laws associated with the traditional recursive operators on datatypes cannot in general be used to transform recursive programs with effects. Motivated by this fact, t ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Fusion laws permit to eliminate various of the intermediate data structures that are created in function compositions. The fusion laws associated with the traditional recursive operators on datatypes cannot in general be used to transform recursive programs with effects. Motivated by this fact, this paper addresses the definition of two recursive operators on datatypes that capture functional programs with effects. Effects are assumed to be modeled by monads. The main goal is thus the derivation of fusion laws for the new operators. One of the new operators is called monadic unfold. It captures programs (with effects) that generate a data structure in a standard way. The other operator is called monadic hylomorphism, and corresponds to programs formed by the composition of a monadic unfold followed by a function defined by structural induction on the data structure that the monadic unfold generates. 1 Introduction A common approach to program design in functional programmin...
Monadic Corecursion  Definition, Fusion Laws, and Applications
 Electronic Notes in Theoretical Computer Science
, 1998
"... This paper investigates corecursive definitions which are at the same time monadic. This corresponds to functions that generate a data structure following a corecursive process, while producing a computational effect modeled by a monad. We introduce a functional, called monadic anamorphism, that cap ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
This paper investigates corecursive definitions which are at the same time monadic. This corresponds to functions that generate a data structure following a corecursive process, while producing a computational effect modeled by a monad. We introduce a functional, called monadic anamorphism, that captures definitions of this kind. We also explore another class of monadic recursive functions, corresponding to the composition of a monadic anamorphism followed by (the lifting of) a function defined by structural recursion on the data structure that the monadic anamorphism generates. Such kind of functions are captured by socalled monadic hylomorphism. We present transformation laws for these monadic functionals. Two nontrivial applications are also described.