Results 1 
2 of
2
Recursively Enumerable Reals and Chaitin Ω Numbers
"... A real is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay [23] and Chaitin [10] we say that an r.e. real dominates an r.e. real if from a good approximation of from below one can compute a good approximation of from b ..."
Abstract

Cited by 35 (3 self)
 Add to MetaCart
A real is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay [23] and Chaitin [10] we say that an r.e. real dominates an r.e. real if from a good approximation of from below one can compute a good approximation of from below. We shall study this relation and characterize it in terms of relations between r.e. sets. Solovay's [23]like numbers are the maximal r.e. real numbers with respect to this order. They are random r.e. real numbers. The halting probability ofa universal selfdelimiting Turing machine (Chaitin's Ω number, [9]) is also a random r.e. real. Solovay showed that any Chaitin Ω number islike. In this paper we show that the converse implication is true as well: any Ωlike real in the unit interval is the halting probability of a universal selfdelimiting Turing machine.
Computable Approximations of Reals: An InformationTheoretic Analysis
 Fundamenta Informaticae
, 1997
"... How fast can one approximate a real by a computable sequence of rationals? We show that the answer to this question depends very much on the information content in the finite prefixes of the binary expansion of the real. Computable reals, whose binary expansions haveavery low information content, ca ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
How fast can one approximate a real by a computable sequence of rationals? We show that the answer to this question depends very much on the information content in the finite prefixes of the binary expansion of the real. Computable reals, whose binary expansions haveavery low information content, can be approximated (very fast) with a computable convergence rate. Random reals, whose binary expansions contain very much information in their prefixes, can be approximated only very slowly by computable sequences of rationals (this is the case, for example, for Chaitin's \Omega numbers) if they can be computably approximated at all. We show that one can computably approximate any computable real also very slowly, with a convergence rate slower than any computable function. However, there is still a large gap between computable reals and random reals: any computable sequence of rationals which converges (monotonically) to a random real converges slower than any computable sequence of rat...