Results 1 
5 of
5
The Constructed Objectivity of Mathematics and the Cognitive Subject
, 2001
"... Introduction This essay concerns the nature and the foundation of mathematical knowledge, broadly construed. The main idea is that mathematics is a human construction, but a very peculiar one, as it is grounded on forms of "invariance" and "conceptual stability" that single out the mathematical con ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Introduction This essay concerns the nature and the foundation of mathematical knowledge, broadly construed. The main idea is that mathematics is a human construction, but a very peculiar one, as it is grounded on forms of "invariance" and "conceptual stability" that single out the mathematical conceptualization from any other form of knowledge, and give unity to it. Yet, this very conceptualization is deeply rooted in our "acts of experience", as Weyl says, beginning with our presence in the world, first in space and time as living beings, up to the most complex attempts we make by language to give an account of it. I will try to sketch the origin of some key steps in organizing perception and knowledge by "mathematical tools", as mathematics is one of the many practical and conceptual instruments by which we categorize, organise and "give a structure" to the world. It is conceived on the "interface" between us and the world, or, to put it in husserlian terminology, it is "de
Mathematics and the Biological Phenomena
"... The first part of this paper highlights some key aspects of the differences in the use of mathematical tools in physics and in biology. Scientific knowledge is viewed as a network of interactions, more than as a hierachically organized structure where mathematics would display the essence of phenome ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
The first part of this paper highlights some key aspects of the differences in the use of mathematical tools in physics and in biology. Scientific knowledge is viewed as a network of interactions, more than as a hierachically organized structure where mathematics would display the essence of phenomena. The concept of "unity" in the biological phenomenon is then discussed. In the second part, a foundational issue in mathematics is revisited, following recent perspectives in the physiology of action. The relevance of the historical formation of mathematical concepts is also emphasized. Part I: Reflections on Mathematics in Biology Introduction: hierarchies of disciplines. When hearing biologists about working methods in their discipline, one may often appreciate traces of the emotions of a scientific experience of great 1 In Proceedings of the International Symposium on Foundations in Mathematics and Biology: Problems, Prospects, Interactions, Invited lecture, Pontifical Lateran Univer...
The reasonable effectiveness of Mathematics and its Cognitive roots
, 2001
"... this paper, Mathematics is viewed as a "three dimensional manifold" grounded on logic, formalisms and invariants of space; we will appreciate by 1 ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
this paper, Mathematics is viewed as a "three dimensional manifold" grounded on logic, formalisms and invariants of space; we will appreciate by 1
Conceptions of the Continuum
"... Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question ..."
Abstract
 Add to MetaCart
Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question the idea from current set theory that the continuum is somehow a uniquely determined concept. Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions. 1. What is the continuum? On the face of it, there are several distinct forms of the continuum as a mathematical concept: in geometry, as a straight line, in analysis as the real number system (characterized in one of several ways), and in set theory as the power set of the natural numbers and, alternatively, as the set of all infinite sequences of zeros and ones. Since it is common to refer to the continuum, in what sense are these all instances of the same concept? When one speaks of the continuum in current settheoretical
CHAPTER 7 MATHEMATICAL CONCEPTS AND PHYSICAL OBJECTS
"... Abstract. The notions of “construction principles ” is proposed as a complementary notion w.r. to the familiar “proof principles ” of Proof Theory. The aim is to develop a parallel analysis of these principles in Mathematics and Physics: common construction principles, in spite of different proof pr ..."
Abstract
 Add to MetaCart
Abstract. The notions of “construction principles ” is proposed as a complementary notion w.r. to the familiar “proof principles ” of Proof Theory. The aim is to develop a parallel analysis of these principles in Mathematics and Physics: common construction principles, in spite of different proof principles, justify the effectiveness of Mathematics in Physics. The very “objects ” of these disciplines are grounded on commun genealogies of concepts: there is no trascendence of concepts nor of objects without their contingent and shared constitution. A comparative analysis of Husserl’s and Gödel’s philosophy is hinted, with many references to H. Weyl’s reflections on Mathematics and Physics. Introduction (with F. Bailly) With this text, we will first of all discuss a distinction, internal to mathematics, between “construction principles ” and “proof principles ” (see [Longo, 1999; 2002]). In short, it will be a question of grasping the difference between the construction of mathematical concepts and structures