Results 1 
4 of
4
The Constructed Objectivity of Mathematics and the Cognitive Subject
, 2001
"... Introduction This essay concerns the nature and the foundation of mathematical knowledge, broadly construed. The main idea is that mathematics is a human construction, but a very peculiar one, as it is grounded on forms of "invariance" and "conceptual stability" that single out the mathematical con ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Introduction This essay concerns the nature and the foundation of mathematical knowledge, broadly construed. The main idea is that mathematics is a human construction, but a very peculiar one, as it is grounded on forms of "invariance" and "conceptual stability" that single out the mathematical conceptualization from any other form of knowledge, and give unity to it. Yet, this very conceptualization is deeply rooted in our "acts of experience", as Weyl says, beginning with our presence in the world, first in space and time as living beings, up to the most complex attempts we make by language to give an account of it. I will try to sketch the origin of some key steps in organizing perception and knowledge by "mathematical tools", as mathematics is one of the many practical and conceptual instruments by which we categorize, organise and "give a structure" to the world. It is conceived on the "interface" between us and the world, or, to put it in husserlian terminology, it is "de
The reasonable effectiveness of Mathematics and its Cognitive roots
, 2001
"... this paper, Mathematics is viewed as a "three dimensional manifold" grounded on logic, formalisms and invariants of space; we will appreciate by 1 ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
this paper, Mathematics is viewed as a "three dimensional manifold" grounded on logic, formalisms and invariants of space; we will appreciate by 1
The reasonable effectiveness of Mathematics and its Cognitive roots 1
"... “At the beginning, Nature set up matters its own way and, later, it constructed human intelligence in such a way that [this intelligence] could understand it” [Galileo Galilei, 1632 (Opere, p. 298)]. “The applicability of our science [mathematics] seems then as a symptom of its rooting, not as a mea ..."
Abstract
 Add to MetaCart
“At the beginning, Nature set up matters its own way and, later, it constructed human intelligence in such a way that [this intelligence] could understand it” [Galileo Galilei, 1632 (Opere, p. 298)]. “The applicability of our science [mathematics] seems then as a symptom of its rooting, not as a measure of its value. Mathematics, as a tree which freely develops his top, draws its strength by the thousands roots in a ground of intuitions of real representations; it would be disastrous to cut them off, in view of a shortsided utilitarism, or to uproot them from the ground from which they rose ” [H. Weyl, 1910]. Summary. Mathematics stems out from our ways of making the world intelligible by its peculiar conceptual stability and unity; we invented it and used it to single out key regularities of space and language. This is exemplified and summarised below in references to the main foundational approaches to Mathematics, as proposed in the last 150 years. Its unity is also stressed: in this paper, Mathematics is viewed as a "three dimensional
The Constructed Objectivity of Mathematics and the Cognitive Subject 1
"... ÇThe problems of Mathematics are not isolated problems in a vacuum; there pulses in them the life of ideas which realize themselves in concreto through out human endeavours in our historical existence, yet forming an indissoluble whole transcend any particular scienceÈ [Hermann Weyl, 1949]. ..."
Abstract
 Add to MetaCart
ÇThe problems of Mathematics are not isolated problems in a vacuum; there pulses in them the life of ideas which realize themselves in concreto through out human endeavours in our historical existence, yet forming an indissoluble whole transcend any particular scienceÈ [Hermann Weyl, 1949].