Results 1  10
of
26
Optimal Coding and Sampling of Triangulations
, 2003
"... Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a bypr ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a byproduct we derive: (i) a simple interpretation of the formula for the number of plane triangulations with n vertices, (ii) a linear random sampling algorithm, (iii) an explicit and simple information theory optimal encoding. 1
Planar Minimally Rigid Graphs and PseudoTriangulations
, 2003
"... Pointed pseudotriangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (incident to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under cer ..."
Abstract

Cited by 29 (14 self)
 Add to MetaCart
Pointed pseudotriangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (incident to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial constraints. The proofs yield efficient embedding algorithms. They also provide—to the best of our knowledge—the first algorithmically effective result on graph embeddings with oriented matroid constraints other than convexity of faces.
Lattice Structures from Planar Graphs
 Elec. J. Comb
, 2004
"... The set of all orientations of a planar graph with prescribed outdegrees carries the structure of a distributive lattice. This general theorem is proven in the first part of the paper. In the second part the theorem is applied to show that interesting combinatorial sets related to a planar graph hav ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
The set of all orientations of a planar graph with prescribed outdegrees carries the structure of a distributive lattice. This general theorem is proven in the first part of the paper. In the second part the theorem is applied to show that interesting combinatorial sets related to a planar graph have lattice structure: Eulerian orientations, spanning trees and Schnyder woods. For the Schnyder wood application some additional theory has to be developed. In particular it is shown that a Schnyder wood for a planar graph induces a Schnyder wood for the dual.
Strictly Convex Drawings of Planar Graphs
, 2004
"... Every threeconnected planar graph with n vertices has a drawing on an O(n7=3) \Theta O(n7=3) grid in which all faces are strictly convex polygons. ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Every threeconnected planar graph with n vertices has a drawing on an O(n7=3) \Theta O(n7=3) grid in which all faces are strictly convex polygons.
Greedy Drawings of Triangulations
, 2007
"... Greedy Routing is a class of routing algorithms in which the packets are forwarded in a manner that reduces the distance to the destination at every step. In an attempt to provide theoretical guarantees for a class of greedy routing algorithms, Papadimitriou and Ratajczak [PR05] came up with the fol ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Greedy Routing is a class of routing algorithms in which the packets are forwarded in a manner that reduces the distance to the destination at every step. In an attempt to provide theoretical guarantees for a class of greedy routing algorithms, Papadimitriou and Ratajczak [PR05] came up with the following conjecture: Any 3connected planar graph can be drawn in the plane such that for every pair of vertices s and t a distance decreasing path can be found. A path s = v1,v2,...,vk = t in a drawing is said to be distance decreasing if �vi − t � < �vi−1 − t�, 2 ≤ i ≤ k where �... � denotes the Euclidean distance. We settle this conjecture in the affirmative for the case of triangulations. A partitioning of the edges of a triangulation G into 3 trees, called the realizer of G, was first developed by Walter Schnyder who also gave a drawing algorithm based on this. We generalize Schnyder’s algorithm to obtain a whole class of drawings of any given triangulation G. We show, using the KnasterKuratowskiMazurkiewicz Theorem, that some drawing of G belonging to this class is greedy. 1 1
Transversal structures on triangulations, combinatorial study and straightline drawing
, 2007
"... This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edgelabelling and consists of two transversal bip ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edgelabelling and consists of two transversal bipolar orientations. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straightline drawing algorithm for irreducible triangulations. For a random irreducible triangulation with n vertices, the grid size of the drawing is asymptotically with high probability 11n/27 × 11n/27 up to an additive error of O ( √ n). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (⌈n/2 ⌉ − 1) × ⌊n/2⌋.
Transversal structures on triangulations, with application to straight line drawing
 LECTURE NOTES IN COMPUTER SCIENCE
, 2005
"... We define and study a structure called transversal edgepartition related to triangulations without non empty triangles, which is equivalent to the regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straightline drawing ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We define and study a structure called transversal edgepartition related to triangulations without non empty triangles, which is equivalent to the regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straightline drawing algorithm for triangulations without non empty triangles, and more generally for 4connected plane graphs with at least 4 border vertices. Taking uniformly at random such a triangulation with 4 border vertices and n vertices, the size of the grid is almost surely n
Binary labelings for plane quadrangulations and their relatives
, 2007
"... Motivated by the bijection between Schnyder labelings of a plane triangulation and partitions of its inner edges into three trees, we look for binary labelings for quadrangulations (whose edges can be partitioned into two trees). Our labeling resembles many of the properties of Schnyder’s one for tr ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
Motivated by the bijection between Schnyder labelings of a plane triangulation and partitions of its inner edges into three trees, we look for binary labelings for quadrangulations (whose edges can be partitioned into two trees). Our labeling resembles many of the properties of Schnyder’s one for triangulations: Apart from being in bijection with tree decompositions, paths in these trees allow to define the regions of a vertex such that counting faces in them yields an algorithm for embedding the quadrangulation, in this case on a 2book. Furthermore, as Schnyder labelings have been extended to 3connected plane graphs, we are able to extend our labeling from quadrangulations to a larger class of 2connected bipartite graphs.
Geodesic Embeddings and Planar Graphs
, 2002
"... Schnyder labelings are known to have close links to order dimension and drawings of planar graphs. It was observed by Ezra Miller that geodesic embeddings of planar graphs are another class of combinatorial or geometric objects closely linked to Schnyder labelings. We aim to contribute to a better u ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
Schnyder labelings are known to have close links to order dimension and drawings of planar graphs. It was observed by Ezra Miller that geodesic embeddings of planar graphs are another class of combinatorial or geometric objects closely linked to Schnyder labelings. We aim to contribute to a better understanding of the connections between these objects. In this article we prove a characterization of 3connected planar graphs as those graphs admitting rigid geodesic embeddings, a bijection between Schnyder labelings and rigid geodesic embeddings, a strong version of the BrightwellTrotter theorem.