Results 1  10
of
27
GapDefinable Counting Classes
, 1991
"... The function class #P lacks an important closure property: it is not closed under subtraction. To remedy this problem, we introduce the function class GapP as a natural alternative to #P. GapP is the closure of #P under subtraction, and has all the other useful closure properties of #P as well. We s ..."
Abstract

Cited by 124 (13 self)
 Add to MetaCart
The function class #P lacks an important closure property: it is not closed under subtraction. To remedy this problem, we introduce the function class GapP as a natural alternative to #P. GapP is the closure of #P under subtraction, and has all the other useful closure properties of #P as well. We show that most previously studied counting classes, including PP, C=P, and Mod k P, are "gapdefinable," i.e., definable using the values of GapP functions alone. We show that there is a smallest gapdefinable class, SPP, which is still large enough to contain Few. We also show that SPP consists of exactly those languages low for GapP, and thus SPP languages are low for any gapdefinable class. These results unify and improve earlier disparate results of Cai & Hemachandra [7] and Kobler, Schoning, Toda, & Tor'an [15]. We show further that any countable collection of languages is contained in a unique minimum gapdefinable class, which implies that the gapdefinable classes form a lattice un...
Counting Classes: Thresholds, Parity, Mods, and Fewness
, 1996
"... Counting classes consist of languages defined in terms of the number of accepting computations of nondeterministic polynomialtime Turing machines. Well known examples of counting classes are NP, coNP, \PhiP, and PP. Every counting class is a subset of P #P[1] , the class of languages computable ..."
Abstract

Cited by 61 (13 self)
 Add to MetaCart
Counting classes consist of languages defined in terms of the number of accepting computations of nondeterministic polynomialtime Turing machines. Well known examples of counting classes are NP, coNP, \PhiP, and PP. Every counting class is a subset of P #P[1] , the class of languages computable in polynomial time using a single call to an oracle capable of determining the number of accepting paths of an NP machine. Using closure properties of #P, we systematically develop a complexity theory for counting classes defined in terms of thresholds and moduli. An unexpected result is that MOD k iP = MOD k P for prime k. Finally, we improve a result of Cai and Hemachandra by showing that recognizing languages in the class Few is as easy as distinguishing uniquely satisfiable formulas from unsatisfiable formulas (or detecting unique solutions, as in [28]). 1. Introduction Valiant [27] defined the class #P of functions whose values equal the number of accepting paths of polynomialtime bo...
QueryLimited Reducibilities
, 1995
"... We study classes of sets and functions computable by algorithms that make a limited number of queries to an oracle. We distinguish between queries made in parallel (each question being independent of the answers to the others, as in a truthtable reduction) and queries made in serial (each question ..."
Abstract

Cited by 41 (14 self)
 Add to MetaCart
We study classes of sets and functions computable by algorithms that make a limited number of queries to an oracle. We distinguish between queries made in parallel (each question being independent of the answers to the others, as in a truthtable reduction) and queries made in serial (each question being permitted to depend on the answers to the previous questions, as in a Turing reduction). We define computability by a set of functions, and we show that it captures the informationtheoretic aspects of computability by a fixed number of queries to an oracle. Using that concept, we prove a very powerful result, the Nonspeedup Theorem, which states that 2 n parallel queries to any fixed nonrecursive oracle cannot be answered by an algorithm that makes only n queries to any oracle whatsoever. This is the tightest general result possible. A corollary is the intuitively obvious, but nontrivial result that additional parallel queries to an oracle allow us to compute additional functions; t...
Structure and Importance of LogspaceMODClasses
, 1992
"... . We refine the techniques of Beigel, Gill, Hertrampf [4] who investigated polynomial time counting classes, in order to make them applicable to the case of logarithmic space. We define the complexity classes MOD k L and demonstrate their significance by proving that all standard problems of linear ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
. We refine the techniques of Beigel, Gill, Hertrampf [4] who investigated polynomial time counting classes, in order to make them applicable to the case of logarithmic space. We define the complexity classes MOD k L and demonstrate their significance by proving that all standard problems of linear algebra over the finite rings Z/kZ are complete for these classes. We then define new complexity classes LogFew and LogFewNL and identify them as adequate logspace versions of Few and FewP. We show that LogFewNL is contained in MODZ k L and that LogFew is contained in MOD k L for all k. Also an upper bound for L #L in terms of computation of integer determinants is given from which we conclude that all logspace counting classes are contained in NC 2 . 1 Introduction Valiant [21] defined the class #P of functions f such that there is a nondeterministic polynomial time Turing machine which, on input x, has exactly f(x) accepting computation paths. Many complexity classes in the area betw...
A Downward Collapse Within The Polynomial Hierarchy
, 1998
"... . Downward collapse (also known as upward separation) refers to cases where the equality of two larger classes implies the equality of two smaller classes. We provide an unqualified downward collapse result completely within the polynomial hierarchy. In particular, we prove that, for
Abstract

Cited by 23 (9 self)
 Add to MetaCart
.<F3.803e+05> Downward collapse (also known as upward separation) refers to cases where the equality of two larger classes implies the equality of two smaller classes. We provide an unqualified downward collapse result completely within the polynomial hierarchy. In particular, we prove that, for<F3.319e+05> k ><F3.803e+05> 2, if P<F2.821e+05> #<F2.795e+05> p k<F2.821e+05> [1]<F3.803e+05> = P<F2.821e+05> #<F2.795e+05> p k<F2.821e+05> [2]<F3.803e+05> then #<F2.562e+05> p k<F3.803e+05> = #<F2.562e+05> p k<F3.803e+05> = PH. We extend this to obtain a more general downward collapse result.<F4.005e+05> Key words.<F3.803e+05> computational complexity theory, easyhard arguments, downward collapse, polynomial hierarchy<F4.005e+05> AMS subject classifications.<F3.803e+05> 68Q15, 68Q10, 03D15, 03D10<F4.005e+05> PII.<F3.803e+05> S0097539796306474<F5.353e+05> 1. Introduction.<F4.529e+05> The theory of NPcompleteness does not resolve the issue of whether P and NP are equal. However, it do...
Unambiguity and Fewness for Logarithmic Space
, 1991
"... We consider various types of unambiguity for logarithmic space bounded Turing machines and polynomial time bounded log space auxiliary pushdown automata. In particular, we introduce the notions of (general), reach, and strong unambiguity. We demonstrate that closure under complement of unambiguo ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
We consider various types of unambiguity for logarithmic space bounded Turing machines and polynomial time bounded log space auxiliary pushdown automata. In particular, we introduce the notions of (general), reach, and strong unambiguity. We demonstrate that closure under complement of unambiguous classes implies equivalence of unambiguity and "unambiguous fewness". This, as we will show, applies in the cases of reach and strong unambiguity for logspace. Among the many relations we exhibit, we show that the unambiguous linear contextfree languages, which are not known to be contained in LOGSPACE, nevertheless are contained in strongly unambiguous logspace, and, consequently, in LOGDCFL. In fact, this turns out to be the case for all logspace languages with reach unambiguous fewness. In addition, we show that general unambiguity and fewness of logspace classes can be simulated by reach unambiguity and fewness of auxiliary pushdown automata. 1 Introduction Although the pow...
The Satanic Notations: Counting Classes Beyond #P and Other Definitional Adventures
, 1994
"... We explore the potentially "offbyone" nature of the definitions of counting (#P versus #NP), difference (DP versus DNP), and unambiguous (UP versus UNP; FewP versus FewNP) classes, and make suggestions as to logical approaches in each case. We discuss the strangely differing representations that o ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
We explore the potentially "offbyone" nature of the definitions of counting (#P versus #NP), difference (DP versus DNP), and unambiguous (UP versus UNP; FewP versus FewNP) classes, and make suggestions as to logical approaches in each case. We discuss the strangely differing representations that oracle and predicate models give for counting classes, and we survey the properties of counting classes beyond #P. We ask whether subtracting a #P function from a P function it is no greater than necessarily yields a #P function. 1 Counting Classes Beyond #P: #NP vs. #P NP vs. #NP NP Valiant [Val79] defined #P to be the class of functions counting the number of accepting paths of NP machines. What notation should one use to describe, for example, the number of accepting paths of the base level of an NP NP machine? Even more to the point, what notation can one use to describe the number of accepting computations of a FewP [All86, AR88] machineNP machines that are required to have a glo...
Unambiguous Computation: Boolean Hierarchies and Sparse TuringComplete Sets
, 1994
"... This paper studies, for UP, two topics that have been intensely studied for NP: Boolean hierarchies and the consequences of the existence of sparse Turingcomplete sets. Unfortunately, as is often the case, the results for NP draw on special properties of NP that do not seem to carry over straightfor ..."
Abstract

Cited by 17 (13 self)
 Add to MetaCart
This paper studies, for UP, two topics that have been intensely studied for NP: Boolean hierarchies and the consequences of the existence of sparse Turingcomplete sets. Unfortunately, as is often the case, the results for NP draw on special properties of NP that do not seem to carry over straightforwardly to UP. For example, it is known for NP (and more generally for any class containing \Sigma and ; and closed under union and intersection) that the symmetric difference hierarchy, the Boolean hierarchy, and the Boolean closure all are equal. We prove that closure under union is not needed for this claim: For any class K that contains \Sigma and ; and is closed under intersection (e.g., UP, US, and FewP), the symmetric difference hierarchy over K, the Boolean hierarchy over K, and the Boolean closure of K all are equal. On the other hand, we show that two hierarchiesthe Hausdorff hierarchy and the nested difference hierarchy which in the NP case are equal to the Boolean cl...
Limitations of the Upward Separation Technique
, 1990
"... this paper was presented at the 16th International Colloquium on Automata, Languages, and Programming [3] ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
this paper was presented at the 16th International Colloquium on Automata, Languages, and Programming [3]
On The Relativized Power of Additional Accepting Paths
, 1989
"... The class UP is the class of languages in NP that are accepted by machines with at most one accepting path on each input. We define U k(n) P as the class of languages in NP that are accepted by machines with at most k(n) accepting paths on each input of length n. Obviously P ` UP ` U k(n) P ` U k(n ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
The class UP is the class of languages in NP that are accepted by machines with at most one accepting path on each input. We define U k(n) P as the class of languages in NP that are accepted by machines with at most k(n) accepting paths on each input of length n. Obviously P ` UP ` U k(n) P ` U k(n)+1 P ` FewP ` NP for every polynomial k(n) 2, where FewP is the class of languages in NP that are accepted by machines with a polynomialbounded number of accepting paths on each input. It is an open question whether any of the containments is proper. A proper containment would imply P 6= NP. We consider the relativized class U k(n) P A , and we construct an oracle A such that P A ae UP A ae U k(n) P A ae U k(n)+1 P A ae FewP A ae NP A for every polynomial k(n) 2. Relative to a random oracle A, we prove that P A ae UP A ae U k P A ae U k+1 P A ae FewP A for every constant k 2, and we prove similar separations when k(n) is not a constant. Previously, Hartmanis and H...