Results 11 
14 of
14
Lambda Calculus
"... Recursive functions are representable as lambda terms, and de nability in the calculus may be regarded as a de nition of computability. This forms part of the standard foundations of computer science. Lambda calculus is the commonly accepted basis of functional programming languages � and it is folk ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Recursive functions are representable as lambda terms, and de nability in the calculus may be regarded as a de nition of computability. This forms part of the standard foundations of computer science. Lambda calculus is the commonly accepted basis of functional programming languages � and it is folklore that the calculus is the prototypical functional language in puri ed form. The course investigates the syntax and semantics of lambda calculus both as a theory of functions from a foundational point of view, and as a minimal programming language. Synopsis Formal theory, xed point theorems, combinatory logic: combinatory completeness, translations between lambda calculus and combinatory logic � reduction: ChurchRosser theorem � Bohm's theorem and applications � basic recursion theory � lambda calculi considered as programming languages � simple type theory and pcf: correspondence between operational and denotational semantics � current developments. Relationship with other courses Basic knowledge of logic and computability in paper B1 is assumed.
A normalization proof for MartinLöf's type theory
, 1996
"... The theory we will be concerned with in this paper is MartinLöf's polymorphic type theory with intensional equality and the universe of small sets. We will give a different proof of normalization for this theory. ..."
Abstract
 Add to MetaCart
The theory we will be concerned with in this paper is MartinLöf's polymorphic type theory with intensional equality and the universe of small sets. We will give a different proof of normalization for this theory.
Proving Properties of Typed λTerms Using Realizability, Covers, and Sheaves
, 1995
"... The main purpose of this paper is to take apart the reducibility method in order to understand how its pieces t together, and in particular, to recast the conditions on candidates of reducibility as sheaf conditions. There has been a feeling among experts on this subject that it should be possible ..."
Abstract
 Add to MetaCart
The main purpose of this paper is to take apart the reducibility method in order to understand how its pieces t together, and in particular, to recast the conditions on candidates of reducibility as sheaf conditions. There has been a feeling among experts on this subject that it should be possible to present the reducibility method using more semantic means, and that a deeper understanding would then be gained. This paper gives mathematical substance to this feeling, by presenting a generalization of the reducibility method based on a semantic notion of realizability which uses the notion of a cover algebra (as in abstract sheaf theory). A key technical ingredient is the introduction a new class of semantic structures equipped with preorders, called preapplicative structures. These structures need not be extensional. In this framework, a general realizability theorem can be shown. Kleene's recursive realizability and a variant of Kreisel's modi ed realizability both t into this framework. We are then able to prove a metatheorem which shows that if a property of realizers satis es some simple conditions, then it holds for the semantic interpretations of all terms. Applying this theorem to the special case of the term model, yields a general theorem for proving properties of typedterms, in particular, strong normalization and con uence. This approach clari es the reducibility method by showing that the closure conditions on candidates of reducibility can be viewed as sheaf conditions. The above approach is applied to the simplytypedcalculus (with types!,,+,and?), and to the secondorder (polymorphic)calculus (with types! and 82), for which it yields a new theorem.