Results 1 
7 of
7
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
WHAT DOES IT TAKE TO PROVE FERMAT’S LAST THEOREM? GROTHENDIECK AND THE LOGIC OF NUMBER THEORY
, 2009
"... Abstract. This paper explores the set theoretic assumptions used in the current published proof of Fermat’s Last Theorem, how these assumptions figure in the methods Wiles uses, and the currently known prospects for a proof using weaker assumptions. Does the proof of Fermat’s Last Theorem (FLT) go b ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Abstract. This paper explores the set theoretic assumptions used in the current published proof of Fermat’s Last Theorem, how these assumptions figure in the methods Wiles uses, and the currently known prospects for a proof using weaker assumptions. Does the proof of Fermat’s Last Theorem (FLT) go beyond Zermelo Fraenkel set theory (ZFC)? Or does it merely use Peano Arithmetic (PA) or some weaker fragment of that? The answers depend on what is meant by “proof ” and “use, ” and are not entirely known. This paper surveys the current state of these questions and briefly sketches the methods of cohomological number theory used in the existing proof. The existing proof of FLT is Wiles [1995] plus improvements that do not yet change its character. Far from selfcontained it has vast prerequisites merely introduced in the 500 pages of [Cornell et al., 1997]. We will say that the assumptions explicitly used in proofs that Wiles cites as steps in his own are “used in fact in the published proof. ” It is currently unknown what assumptions are “used in principle ” in the sense of being prooftheoretically indispensable to FLT. Certainly much less than ZFC is used in principle, probably nothing beyond PA, and perhaps much less than that. The oddly contentious issue is universes, often called Grothendieck universes. 1 On ZFC foundations a universe is an uncountable transitive set U such that 〈U, ∈ 〉 satisfies the ZFC axioms in the nicest way: it contains the powerset of each of its elements, and for any function from an element of U to U the range is also an element of U. This is much stronger than merely saying 〈U, ∈ 〉 satisfies the ZFC axioms. We do not merely say the powerset axiom “every set has a powerset ” is true with all quantifiers relativized to U. Rather, we require “for every set x ∈ U, the powerset of x is also in U ”
SET THEORY FOR CATEGORY THEORY
, 810
"... Abstract. Questions of settheoretic size play an essential role in category theory, especially the distinction between sets and proper classes (or small sets and large sets). There are many different ways to formalize this, and which choice is made can have noticeable effects on what categorical co ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Questions of settheoretic size play an essential role in category theory, especially the distinction between sets and proper classes (or small sets and large sets). There are many different ways to formalize this, and which choice is made can have noticeable effects on what categorical constructions are permissible. In this expository paper we summarize and compare a number
BERNAYS AND SET THEORY
"... We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. ..."
Abstract
 Add to MetaCart
(Show Context)
We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles.
SET THEORY FROM CANTOR TO COHEN
"... Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions and gauging their consistency strength. But set theory is also distinguished by having begun int ..."
Abstract
 Add to MetaCart
Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, set theory has proceeded in the opposite direction, from a web of intensions to a theory of extension par excellence, and like other fields of mathematics its vitality and progress have depended on a steadily growing core of mathematical proofs and methods, problems and results. There is also the stronger contention that from the beginning set theory actually developed through a progression of mathematical moves, whatever and sometimes in spite of what has been claimed on its behalf. What follows is an account of the development of set theory from its beginnings through the creation of forcing based on these contentions, with an avowedly Whiggish emphasis on the heritage that has been retained and developed by the current theory. The
Weak Systems of Set Theory Related to HOL
, 1994
"... this paper all these theories will be assumed to have the axiom of infinity This is clearly a much simpler syntax that HOL: TST is what you get from HOL once you decide to implement functions and ordered pairs as sets: a lot of the type structure collapses. It doesn't even matter very much how ..."
Abstract
 Add to MetaCart
this paper all these theories will be assumed to have the axiom of infinity This is clearly a much simpler syntax that HOL: TST is what you get from HOL once you decide to implement functions and ordered pairs as sets: a lot of the type structure collapses. It doesn't even matter very much how you implement functions and ordered pairs as sets: any implementation of functions and ordered pairs as sets gives rise to an interpretation of HOL in TST. Accordingly we have the following:
Global Reflection Principles
, 2012
"... Reflection Principles are commonly thought to produce only strong axioms of infinity consistent with V = L. It would be desirable to have some notion of strong reflection to remedy this, and we have proposed Global Reflection Principles based on a somewhat Cantorian view of the universe. Such princi ..."
Abstract
 Add to MetaCart
(Show Context)
Reflection Principles are commonly thought to produce only strong axioms of infinity consistent with V = L. It would be desirable to have some notion of strong reflection to remedy this, and we have proposed Global Reflection Principles based on a somewhat Cantorian view of the universe. Such principles justify the kind of cardinals needed for, inter alia, Woodin’s ΩLogic. 1 To say that the universe of all sets is an unfinished totality does not mean objective undeterminateness, but merely a subjective inability to finish it. Gödel, in Wang, [17] 1 Reflection Principles in Set Theory Historically reflection principles are associated with attempts to say that no one notion, idea, or statement can capture our whole view of the universe of sets V = ⋃ α∈On Vα where On is the class of all ordinals. That no one idea can pin down the universe of all sets has firm historical roots (see the quotation from Cantor later or the following): The Universe of sets cannot be uniquely characterized (i.e. distinguished from all its initial segments) by any internal structural property of the membership relation in it, which is expressible in any logic of finite or transfinite type, including infinitary logics of any cardinal number. Gödel: Wang ibid. Indeed once set theory was formalized by the (first order version of) the axioms and schemata of Zermelo with the additions of Skolem and Fraenkel, it was seen that reflection of first order formulae ϕ(v0, , vn) in the language of set theory L∈ ˙ could actually be proven: