Results 1  10
of
129
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 426 (1 self)
 Add to MetaCart
In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms. It is our hope that developers of new algorithms and perturbation theories will benefit from the theory, methods, and examples in this paper.
Snopt: An SQP Algorithm For LargeScale Constrained Optimization
, 1997
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 384 (22 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse.
Interior methods for nonlinear optimization
 SIAM Review
, 2002
"... Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their ..."
Abstract

Cited by 89 (4 self)
 Add to MetaCart
(Show Context)
Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar’s widely publicized announcement in 1984 of a fast polynomialtime interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.
Bayesian estimation of layers from multiple images
 In Seventh European Conference on Computer Vision (ECCV 2002), volume III
, 2002
"... ..."
(Show Context)
Geometry of the squared distance function to curves and surfaces
 VISUALIZATION AND MATHEMATICS III
, 2003
"... We investigate the geometry of that function in the plane or 3space, which associates to each point the square of the shortest distance to a given curve or surface. Particular emphasis is put on second order Taylor approximants and other local quadratic approximants. Their key role in a variety of ..."
Abstract

Cited by 41 (15 self)
 Add to MetaCart
(Show Context)
We investigate the geometry of that function in the plane or 3space, which associates to each point the square of the shortest distance to a given curve or surface. Particular emphasis is put on second order Taylor approximants and other local quadratic approximants. Their key role in a variety of geometric optimization algorithms is illustrated at hand of registration in Computer Vision and surface approximation.
Robust control via sequential semidefinite programming
 SIAM J. CONTROL OPTIM
, 2002
"... This paper discusses nonlinear optimization techniques in robust control synthesis, with special emphasis on design problems which may be cast as minimizing a linear objective function under linear matrix inequality (LMI) constraints in tandem with nonlinear matrix equality constraints. The latter ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
(Show Context)
This paper discusses nonlinear optimization techniques in robust control synthesis, with special emphasis on design problems which may be cast as minimizing a linear objective function under linear matrix inequality (LMI) constraints in tandem with nonlinear matrix equality constraints. The latter type of constraints renders the design numerically and algorithmically difficult. We solve the optimization problem via sequential semidefinite programming (SSDP), a technique which expands on sequential quadratic programming (SQP) known in nonlinear optimization. Global and fast local convergence properties of SSDP are similar to those of SQP, and SSDP is conveniently implemented with available semidefinite programming (SDP) solvers. Using two test examples, we compare SSDP to the augmented Lagrangian method, another classical scheme in nonlinear optimization, and to an approach using concave optimization.
A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm
 SIAM Journal on Optimization
, 2001
"... . A sequential quadratic programming (SQP) algorithm generating feasible iterates is described and analyzed. What distinguishes this algorithm from previous feasible SQP algorithms proposed by various authors is a reduction in the amount of computation required to generate a new iterate while the pr ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
(Show Context)
. A sequential quadratic programming (SQP) algorithm generating feasible iterates is described and analyzed. What distinguishes this algorithm from previous feasible SQP algorithms proposed by various authors is a reduction in the amount of computation required to generate a new iterate while the proposed scheme still enjoys the same global and fast local convergence properties. A preliminary implementation has been tested and some promising numerical results are reported. Key words. sequential quadratic programming, SQP, feasible iterates, feasible SQP, FSQP AMS subject classifications. 49M37, 65K05, 65K10, 90C30, 90C53 PII. S1052623498344562 1.
Finite Element Analysis of Nonsmooth Contact
 COMPUT. METHODS APPL. MECH. ENG
, 1999
"... This work develops robust contact algorithms capable of dealing with complex contact situations involving several bodies with corners. Amongst the mathematical tools we bring to bear on the problem is nonsmooth analysis, following [14]. We specifically address contact geometries for which both the u ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
This work develops robust contact algorithms capable of dealing with complex contact situations involving several bodies with corners. Amongst the mathematical tools we bring to bear on the problem is nonsmooth analysis, following [14]. We specifically address contact geometries for which both the use of normals and gap functions have difficulties and therefore precludes the application of most contact algorithms proposed to date. Such situations arise in applications such as fragmentation, where angular fragments undergo complex collision sequences before they scatter. We demonstrate the robustness and versatility of the nonsmooth contact algorithms developed in this paper with the aid of selected two and threedimensional applications.
STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING FOR OPTIMIZATION AND A STABILIZED NEWTONTYPE METHOD FOR VARIATIONAL PROBLEMS WITHOUT CONSTRAINT QUALIFICATIONS
, 2007
"... The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence ..."
Abstract

Cited by 21 (13 self)
 Add to MetaCart
(Show Context)
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality (SOSC) and the MangasarianFromovitz constraint qualification, or under the strong secondorder sufficient condition for optimality (in that case, without constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming SOSC only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for KarushKuhnTucker systems for variational problems.