Results 1 
4 of
4
Approximation Algorithms for Connected Dominating Sets
 Algorithmica
, 1996
"... The dominating set problem in graphs asks for a minimum size subset of vertices with the following property: each vertex is required to either be in the dominating set, or adjacent to some node in the dominating set. We focus on the question of finding a connected dominating set of minimum size, whe ..."
Abstract

Cited by 277 (9 self)
 Add to MetaCart
The dominating set problem in graphs asks for a minimum size subset of vertices with the following property: each vertex is required to either be in the dominating set, or adjacent to some node in the dominating set. We focus on the question of finding a connected dominating set of minimum size, where the graph induced by vertices in the dominating set is required to be connected as well. This problem arises in network testing, as well as in wireless communication. Two polynomial time algorithms that achieve approximation factors of O(H (\Delta)) are presented, where \Delta is the maximum degree, and H is the harmonic function. This question also arises in relation to the traveling tourist problem, where one is looking for the shortest tour such that each vertex is either visited, or has at least one of its neighbors visited. We study a generalization of the problem when the vertices have weights, and give an algorithm which achieves a performance ratio of 3 ln n. We also consider the ...
When trees collide: An approximation algorithm for the generalized Steiner problem on networks
, 1994
"... We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the a ..."
Abstract

Cited by 219 (32 self)
 Add to MetaCart
We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the available links and satisfying the requirements. Our algorithm outputs a solution whose cost is within 2dlog 2 (r + 1)e of optimal, where r is the highest requirement value. In the course of proving the performance guarantee, we prove a combinatorial minmax approximate equality relating minimumcost networks to maximum packings of certain kinds of cuts. As a consequence of the proof of this theorem, we obtain an approximation algorithm for optimally packing these cuts; we show that this algorithm has application to estimating the reliability of a probabilistic network.
A nearly bestpossible approximation algorithm for nodeweighted Steiner trees
, 1993
"... We give the first approximation algorithm for the nodeweighted Steiner tree problem. Its performance guarantee is within a constant factor of the best possible unless ~ P ' NP . Our algorithm generalizes to handle other network design problems. ..."
Abstract

Cited by 104 (8 self)
 Add to MetaCart
We give the first approximation algorithm for the nodeweighted Steiner tree problem. Its performance guarantee is within a constant factor of the best possible unless ~ P ' NP . Our algorithm generalizes to handle other network design problems.
Steiner Trees and Beyond: Approximation Algorithms for Network Design
, 1993
"... We present approximation algorithms for several NPhard optimization problems arising in network design. Almost all of our algorithms run in polynomial time and output solutions with a worstcase performance guarantee on the quality of the output solution. A typical problem that we consider can be s ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We present approximation algorithms for several NPhard optimization problems arising in network design. Almost all of our algorithms run in polynomial time and output solutions with a worstcase performance guarantee on the quality of the output solution. A typical problem that we consider can be stated as follows: given an undirected graph and certain connectivity requirements, find a subgraph that satisfies these requirements and has minimum cost. In this thesis, we address many different connectivity requirements such as spanning trees, Steiner trees, generalized Steiner forests, and twoconnected networks. The cost criteria that we consider range from the total cost of the edges in the network, the total cost of the nodes in the network, the maximum degree of any node in the network, the maximum cost of any edge in the network to some combination of these. We also address the maximumleaf spanning tree problem and provide the first approximation algorithms for this problem. In t...