Results 1  10
of
35
DUALITY OF HARDY AND BMO SPACES ASSOCIATED WITH OPERATORS WITH HEAT KERNEL BOUNDS
"... The introduction and development of Hardy and BMO spaces on Euclidean spaces Rn in the 1960s and 1970s played an important role in modern harmonic analysis and applications in partial differential equations. These spaces were studied extensively in [32], [22], [18], [19], [31] and many others. ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
The introduction and development of Hardy and BMO spaces on Euclidean spaces Rn in the 1960s and 1970s played an important role in modern harmonic analysis and applications in partial differential equations. These spaces were studied extensively in [32], [22], [18], [19], [31] and many others.
Weighted norm inequalities, offdiagonal estimates and elliptic operators, Part II: Offdiagonal estimates on spaces of homogeneous type
, 2005
"... Abstract. This is the fourth article of our series. Here, we apply the results of [AM1] to study weighted norm inequalities for the Riesz transform of the LaplaceBeltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Poincar ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
Abstract. This is the fourth article of our series. Here, we apply the results of [AM1] to study weighted norm inequalities for the Riesz transform of the LaplaceBeltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Poincaré inequalities. 1. Introduction and
Hardy spaces of differential forms on Riemannian manifolds
, 2006
"... Let M be a complete connected Riemannian manifold. Assuming that the Riemannian measure is doubling, we define Hardy spaces H p of differential forms on M and give various characterizations of them, including an atomic decomposition. As a consequence, we derive the H pboundedness for Riesz transfo ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
Let M be a complete connected Riemannian manifold. Assuming that the Riemannian measure is doubling, we define Hardy spaces H p of differential forms on M and give various characterizations of them, including an atomic decomposition. As a consequence, we derive the H pboundedness for Riesz transforms on M, generalizing previously known results. Further applications, in particular to H ∞ functional calculus and Hodge decomposition, are given.
Bounds of Riesz transforms on L p spaces for second order elliptic operators
 Ann. Inst. Fourier
"... Abstract. Let L = −div(A(x)∇) be a second order elliptic operator with real, symmetric, bounded measurable coefficients on R n or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed p> 2, a necessary and sufficient condition is obtained for the boundedness of the ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Abstract. Let L = −div(A(x)∇) be a second order elliptic operator with real, symmetric, bounded measurable coefficients on R n or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed p> 2, a necessary and sufficient condition is obtained for the boundedness of the Riesz transform ∇(L) −1/2 on the L p space. As an application, for 1 < p < 3 + ε, we establish the L p boundedness of Riesz transforms on Lipschitz domains for operators with V MO coefficients. The range of p is sharp. The closely related boundedness of ∇(L) −1/2 on weighted L 2 spaces is also studied. 1.
Hardy spaces and divergence operators on strongly Lipschitz domain
 of R n , J. Funct. Anal
"... Let Ω be a strongly Lipschitz domain of R n. Consider an elliptic second order divergence operator L (including a boundary condition on ∂Ω) and define a Hardy space by imposing the nontangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L 1. Under su ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Let Ω be a strongly Lipschitz domain of R n. Consider an elliptic second order divergence operator L (including a boundary condition on ∂Ω) and define a Hardy space by imposing the nontangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L 1. Under suitable assumptions on L, we identify this maximal Hardy space with atomic Hardy spaces, namely with H 1 (R n) if Ω = R n, H 1 r(Ω) under the Dirichlet boundary condition, and H1 z (Ω) under the Neumann boundary condition. In particular, we obtain a new proof of the atomic decomposition for H1 z (Ω). A version for local Hardy spaces is also given. We also present an overview of the theory of Hardy spaces and BMO spaces on Lipschitz domains with proofs.
ANALYTICITY OF LAYER POTENTIALS AND L 2 SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR DIVERGENCE FORM ELLIPTIC EQUATIONS WITH COMPLEX L ∞ COEFFICIENTS
, 705
"... Abstract. We consider divergence form elliptic operators of the form L= − div A(x)∇, defined inR n+1 ={(x, t)∈R n ×R}, n≥2, where the L ∞ coefficient matrix A is (n+ 1)×(n+1), uniformly elliptic, complex and tindependent. We show that for such operators, boundedness and invertibility of the corresp ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
Abstract. We consider divergence form elliptic operators of the form L= − div A(x)∇, defined inR n+1 ={(x, t)∈R n ×R}, n≥2, where the L ∞ coefficient matrix A is (n+ 1)×(n+1), uniformly elliptic, complex and tindependent. We show that for such operators, boundedness and invertibility of the corresponding layer potential operators on L2 (Rn)=L 2 (∂Rn+1 +), is stable under complex, L ∞ perturbations of the coefficient matrix. Using a variant of the Tb Theorem, we also prove that the layer potentials are bounded and invertible on L2 (Rn) whenever A(x) is real and symmetric (and thus, by our stability result, also when A is complex,‖A − A0‖ ∞ is small enough and A0 is real, symmetric, L ∞ and elliptic). In particular, we establish solvability of the Dirichlet and Neumann (and Regularity) problems, with L2 (resp. ˙L 2 1) data, for small complex perturbations of a real symmetric matrix. Previously, L2 solvability results for complex (or even real but nonsymmetric) coefficients were known to hold only for perturbations of constant matrices (and then only for the Dirichlet problem), or in the special case that the coefficients A j,n+1 = 0=An+1, j, 1 ≤ j≤n, which corresponds to the Kato square root problem.
The Green function estimates for strongly elliptic systems of second order. arXiv:0704.1352
"... Abstract. We establish existence and pointwise estimates of fundamental solutions and Green’s matrices for divergence form, second order strongly elliptic systems in a domain Ω ⊆ R n, n ≥ 3, under the assumption that solutions of the system satisfy De GiorgiNash type local Hölder continuity estimat ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Abstract. We establish existence and pointwise estimates of fundamental solutions and Green’s matrices for divergence form, second order strongly elliptic systems in a domain Ω ⊆ R n, n ≥ 3, under the assumption that solutions of the system satisfy De GiorgiNash type local Hölder continuity estimates. In particular, our results apply to perturbations of diagonal systems, and thus especially to complex perturbations of a single real equation. 1.
Carleson measures, trees, EXTRAPOLATION, AND T(b) THEOREMS
, 2001
"... The theory of Carleson measures, stopping time arguments, and atomic decompositions has been wellestablished in harmonic analysis. More recent is the theory of phase space analysis from the point of view of wave packets on tiles, tree selection algorithms, and tree size estimates. The purpose of th ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
The theory of Carleson measures, stopping time arguments, and atomic decompositions has been wellestablished in harmonic analysis. More recent is the theory of phase space analysis from the point of view of wave packets on tiles, tree selection algorithms, and tree size estimates. The purpose of this paper is to demonstrate that the two theories are in fact closely related, by taking existing results and reproving them in a unified setting. In particular we give a dyadic version of extrapolation for Carleson measures, as well as a twosided local dyadic T(b) theorem which generalizes earlier T(b)
ON A QUADRATIC ESTIMATE RELATED TO THE KATO CONJECTURE AND BOUNDARY VALUE PROBLEMS
, 810
"... Abstract. We provide a direct proof of a quadratic estimate that plays a central role in the determination of domains of square roots of elliptic operators and, as shown more recently, in some boundary value problems with L 2 boundary data. We develop the application to the Kato conjecture and to a ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
Abstract. We provide a direct proof of a quadratic estimate that plays a central role in the determination of domains of square roots of elliptic operators and, as shown more recently, in some boundary value problems with L 2 boundary data. We develop the application to the Kato conjecture and to a Neumann problem. This quadratic estimate enjoys some equivalent forms in various settings. This gives new results in the functional calculus of Dirac type operators on forms. MSC classes: 35J25, 35J55, 47N20, 47F05, 42B25 Keywords: LittlewoodPaley estimate, functional calculus, boundary value problems, second order elliptic equations and systems, square root problem 1.
Hardy and BMO spaces associated to divergence form elliptic operators
, 2007
"... 1 Introduction and statement of main results 2 ..."