Results 1  10
of
19
Computability and recursion
 BULL. SYMBOLIC LOGIC
, 1996
"... We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they b ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful historical and conceptual analysis of computability and recursion we make several recommendations in section §7 about preserving the intensional differences between the concepts of “computability” and “recursion.” Specifically we recommend that: the term “recursive ” should no longer carry the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register machines, or their variants should be called “computable” rather than “recursive;” we should distinguish the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability rather than
Characterizations of the Basic Feasible Functionals of Finite Type (Extended Abstract)
 Feasible Mathematics: A Mathematical Sciences Institute Workshop
, 1990
"... Stephen A. Cook and Bruce M. Kapron Department of Computer Science University of Toronto Toronto, Canada M5S 1A4 1 Introduction Functionals are functions which take natural numbers and other functionals as arguments and return natural numbers as values. The class of "feasible" functionals of finit ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
Stephen A. Cook and Bruce M. Kapron Department of Computer Science University of Toronto Toronto, Canada M5S 1A4 1 Introduction Functionals are functions which take natural numbers and other functionals as arguments and return natural numbers as values. The class of "feasible" functionals of finite type was introduced in [6] via the typed lambda calculus, and used to interpret certain formal systems of arithmetic: systems capturing the notion of "feasibly constructive proof" (we equate feasibility with polynomial time computability) . Here we name the functionals of [6] the basic feasible functionals and justify the designation by presenting results which include two programming style characterizations of the class. We also give examples of both feasible and infeasible functionals, and argue that the notion plays a natural role in complexity theory. Type 2 functionals take numbers and ordinary numerical functions as arguments. When these argument functions are 01 valued (i.e. sets) ...
The Continuous Functionals of Finite Types Over the Reals
, 1998
"... We investigate a hierarchy of domains with totality where we close some selected base domains, including domains for the reals, the natural numbers and the boolean values, under cartesian products and restricted function spaces. We show that the total objects will be dense in the respective doma ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
We investigate a hierarchy of domains with totality where we close some selected base domains, including domains for the reals, the natural numbers and the boolean values, under cartesian products and restricted function spaces. We show that the total objects will be dense in the respective domains, and that our construction is equivalent to the analogue construction in the category of limit spaces.
Comparing functional paradigms for exact realnumber computation
 in Proceedings ICALP 2002, Springer LNCS 2380
, 2002
"... Abstract. We compare the definability of total functionals over the reals in two functionalprogramming approaches to exact realnumber datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Abstract. We compare the definability of total functionals over the reals in two functionalprogramming approaches to exact realnumber datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to secondorder types, and we relate this fact to an analogous comparison of type hierarchies over the external and internal real numbers in Dana Scott’s category of equilogical spaces. We do not know whether similar coincidences hold at thirdorder types. However, we relate this question to a purely topological conjecture about the KleeneKreisel continuous functionals over the natural numbers. Finally, although it is known that, in the extensional approach, parallel primitives are necessary for programming total firstorder functions, we demonstrate that, in the intensional approach, such primitives are not needed for secondorder types and below. 1
Continuous Functionals of Dependent Types and Equilogical Spaces
, 2000
"... . We show that dependent sums and dependent products of continuous parametrizations on domains with dense, codense, and natural totalities agree with dependent sums and dependent products in equilogical spaces, and thus also in the realizability topos RT(P!). Keywords: continuous functionals, depen ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
. We show that dependent sums and dependent products of continuous parametrizations on domains with dense, codense, and natural totalities agree with dependent sums and dependent products in equilogical spaces, and thus also in the realizability topos RT(P!). Keywords: continuous functionals, dependent type theory, domain theory, equilogical spaces. 1 Introduction Recently there has been a lot of interest in understanding notions of totality for domains [3, 23, 4, 18, 21]. There are several reasons for this. Totality is the semantic analogue of termination, and one is naturally interested in understanding not only termination properties of programs but also how notions of program equivalence depend on assumptions regarding termination [21]. Another reason for studying totality on domains is to obtain generalizations of the nitetype hierarchy of total continuous functionals by Kleene and Kreisel [11], see [8] and [19] for good accounts of this subject. Ershov [7] showed how the Klee...
Foundational and mathematical uses of higher types
 REFLECTIONS ON THE FOUNDATIONS OF MATHEMATICS: ESSAY IN HONOR OF SOLOMON FEFERMAN
, 1999
"... In this paper we develop mathematically strong systems of analysis in higher types which, nevertheless, are prooftheoretically weak, i.e. conservative over elementary resp. primitive recursive arithmetic. These systems are based on noncollapsing hierarchies ( n WKL+ ; n WKL+ ) of principles ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
In this paper we develop mathematically strong systems of analysis in higher types which, nevertheless, are prooftheoretically weak, i.e. conservative over elementary resp. primitive recursive arithmetic. These systems are based on noncollapsing hierarchies ( n WKL+ ; n WKL+ ) of principles which generalize (and for n = 0 coincide with) the socalled `weak' König's lemma WKL (which has been studied extensively in the context of second order arithmetic) to logically more complex tree predicates. Whereas the second order context used in the program of reverse mathematics requires an encoding of higher analytical concepts like continuous functions F : X ! Y between Polish spaces X;Y , the more exible language of our systems allows to treat such objects directly. This is of relevance as the encoding of F used in reverse mathematics tacitly yields a constructively enriched notion of continuous functions which e.g. for F : IN ! IN can be seen (in our higher order context)
On the ubiquity of certain total type structures
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2007
"... It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel co ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel continuous functionals, its effective substructure C eff, and the type structure HEO of the hereditarily effective operations. However, the proofs of the relevant equivalences are often nontrivial, and it is not immediately clear why these particular type structures should arise so ubiquitously. In this paper we present some new results which go some way towards explaining this phenomenon. Our results show that a large class of extensional collapse constructions always give rise to C, C eff or HEO (as appropriate). We obtain versions of our results for both the “standard” and “modified” extensional collapse constructions. The proofs make essential use of a technique due to Normann. Many new results, as well as some previously known ones, can be obtained as instances of our theorems, but more importantly, the proofs apply uniformly to a whole family of constructions, and provide strong evidence that the above three type structures are highly canonical mathematical objects.
Limit Spaces and Transfinite Types
, 1998
"... We give a characterisation of an extension of the KleeneKreisel continuous functionals to objects of transfinite types using limit spaces of transfinite types. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We give a characterisation of an extension of the KleeneKreisel continuous functionals to objects of transfinite types using limit spaces of transfinite types.