Results 1  10
of
26
PCF extended with real numbers
, 1996
"... We extend the programming language PCF with a type for (total and partial) real numbers. By a partial real number we mean an element of a cpo of intervals, whose subspace of maximal elements (singlepoint intervals) is homeomorphic to the Euclidean real line. We show that partial real numbers can be ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
We extend the programming language PCF with a type for (total and partial) real numbers. By a partial real number we mean an element of a cpo of intervals, whose subspace of maximal elements (singlepoint intervals) is homeomorphic to the Euclidean real line. We show that partial real numbers can be considered as “continuous words”. Concatenation of continuous words corresponds to refinement of partial information. The usual basic operations cons, head and tail used to explicitly or recursively define functions on words generalize to partial real numbers. We use this fact to give an operational semantics to the above referred extension of PCF. We prove that the operational semantics is sound and complete with respect to the denotational semantics. A program of real number type evaluates to a headnormal form iff its value is different from ⊥; if its value is different from ⊥ then it successively evaluates to headnormal forms giving better and better partial results converging to its value.
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 49 (11 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
Lazy Functional Algorithms for Exact Real Functionals
 Lec. Not. Comput. Sci
, 1998
"... . We show how functional languages can be used to write programs for realvalued functionals in exact real arithmetic. We concentrate on two useful functionals: definite integration, and the functional returning the maximum value of a continuous function over a closed interval. The algorithms are a ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
(Show Context)
. We show how functional languages can be used to write programs for realvalued functionals in exact real arithmetic. We concentrate on two useful functionals: definite integration, and the functional returning the maximum value of a continuous function over a closed interval. The algorithms are a practical application of a method, due to Berger, for computing quantifiers over streams. Correctness proofs for the algorithms make essential use of domain theory. 1 Introduction In exact real number computation, infinite representations of reals are employed to avoid the usual rounding errors that are inherent in floating point computation [46, 17]. For certain real number computations that are highly sensitive to small variations in the input, such rounding errors become inordinately large and the use of floatingpoint algorithms can lead to completely erroneous results [1, 14]. In such situations, exact real number computation provides guaranteed correctness, although at the (probably...
PCF extended with real numbers: a domaintheoretic approach to higherorder exact real number computation
, 1996
"... ..."
Comparing functional paradigms for exact realnumber computation
 in Proceedings ICALP 2002, Springer LNCS 2380
, 2002
"... Abstract. We compare the definability of total functionals over the reals in two functionalprogramming approaches to exact realnumber datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
Abstract. We compare the definability of total functionals over the reals in two functionalprogramming approaches to exact realnumber datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to secondorder types, and we relate this fact to an analogous comparison of type hierarchies over the external and internal real numbers in Dana Scott’s category of equilogical spaces. We do not know whether similar coincidences hold at thirdorder types. However, we relate this question to a purely topological conjecture about the KleeneKreisel continuous functionals over the natural numbers. Finally, although it is known that, in the extensional approach, parallel primitives are necessary for programming total firstorder functions, we demonstrate that, in the intensional approach, such primitives are not needed for secondorder types and below. 1
A universal characterization of the closed euclidean interval (Extended Abstract)
 PROC. OF 16TH ANN. IEEE SYMP. ON LOGIC IN COMPUTER SCIENCE, LICS'01
, 2001
"... We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basi ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basic arithmetic operations and to verify equations between them. We test the notion in categories of interest. In the
Lazy Computation with Exact Real Numbers
 PROCEEDINGS OF THE THIRD ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING (ICFP98), VOLUME 34, 1 OF ACM SIGPLAN NOTICES
, 1997
"... We extend the framework for exact real arithmetic using linear fractional transformations from the nonnegative numbers to the extended real line. We then present an extension of PCF with a real type which introduces an eventually breadthfirst strategy for lazy evaluation of exact real numbers. In ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We extend the framework for exact real arithmetic using linear fractional transformations from the nonnegative numbers to the extended real line. We then present an extension of PCF with a real type which introduces an eventually breadthfirst strategy for lazy evaluation of exact real numbers. In this language, we present the constant redundant if, rif, for defining functions by cases which, in contrast to parallel if (pif), overcomes the problem of undecidability of comparison of real numbers in finite time. We use the upper space of the onepoint compactification of the real line to develop a denotational semantics for the lazy evaluation of real programs. Finally two adequacy results are proved, one for programs containing rif and one for those not containing it. Our adequacy results in particular provide the proof of correctness of algorithms for computation of singlevalued elementary functions.
Integration in real PCF
 Information and Computation
, 1996
"... Real PCF is an extension of the programming language PCF with a data type for real numbers. Although a Real PCF definable real number cannot be computed in finitely many steps, it is possible to compute an arbitrarily small rational interval containing the real number in a sufficiently large number ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Real PCF is an extension of the programming language PCF with a data type for real numbers. Although a Real PCF definable real number cannot be computed in finitely many steps, it is possible to compute an arbitrarily small rational interval containing the real number in a sufficiently large number of steps. Based on a domaintheoretic approach to integration, we show how to define integration in Real PCF. We propose two approaches to integration in Real PCF. One consists in adding integration as primitive. The other consists in adding a primitive for function maximization and then recursively defining integration from maximization. In both cases we have a computational adequacy theorem for the corresponding extension of Real PCF. Moreover, based on previous work on Real PCF definability, we show that Real PCF extended with the maximization operator is universal. 1
Applications of the KleeneKreisel Density Theorem to Theoretical Computer Science
, 2006
"... The KleeneKreisel density theorem is one of the tools used to investigate the denotational semantics of programs involving higher types. We give a brief introduction to the classical density theorem, then show how this may be generalized to set theoretical models for algorithms accepting real numbe ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
The KleeneKreisel density theorem is one of the tools used to investigate the denotational semantics of programs involving higher types. We give a brief introduction to the classical density theorem, then show how this may be generalized to set theoretical models for algorithms accepting real numbers as inputs and finally survey some recent applications of this generalization. 1