Results 1 
4 of
4
Embedding finite lattices into the computably enumerable degrees  a status survey
 In Proceedings of Logic Colloquium
, 2002
"... Abstract. We survey the current status of an old open question in classical computability theory: Which finite lattices can be embedded into the degree structure of the computably enumerable degrees? Does the collection of embeddable finite lattices even form a computable set? Two recent papers by t ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We survey the current status of an old open question in classical computability theory: Which finite lattices can be embedded into the degree structure of the computably enumerable degrees? Does the collection of embeddable finite lattices even form a computable set? Two recent papers by the second author show that for a large subclass of the finite lattices, the socalled joinsemidistributive lattices (or lattices without socalled “critical triple”), the collection of embeddable lattices forms a Π0 2set. This paper surveys recent joint work by the authors, concentrating on restricting the number of meets by considering “quasilattices”, i.e., finite upper semilattices in which only some meets of incomparable elements are specified. In particular, we note that all finite quasilattices with one meet specified are embeddable; and that the class of embeddable finite quasilattices with two meets specified, while nontrivial, forms a computable set. On the other hand, more sophisticated techniques may be necessary for finite quasilattices with three meets specified. 1.
The Role of True Finiteness in the Admissible Recursively Enumerable Degrees
 Memoirs of the American Mathematical Society
"... Abstract. When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of αfiniteness. As examples we discuss both codings of models of arithmetic into the recursively enumerable degrees, and nondistributive lattice embeddings into these degrees. We show that if an admissible ordinal α is effectively close to ω (where this closeness can be measured by size or by cofinality) then such constructions may be performed in the αr.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the firstorder language of partially ordered sets, and so these results also show that there are natural elementary differences between the structures of αr.e. degrees for various classes of admissible ordinals α. Together with coding work which shows that for some α, the theory of the αr.e. degrees is complicated, we get that for every admissible ordinal
1 Introduction Degrees of Unsolvability
, 2006
"... Modern computability theory began with Turing [Turing, 1936], where he introduced ..."
Abstract
 Add to MetaCart
Modern computability theory began with Turing [Turing, 1936], where he introduced
EMBEDDINGS INTO THE COMPUTABLY ENUMERABLE DEGREES
"... Abstract. We discuss the status of the problem of characterizing the finite (weak) lattices which can be embedded into the computably enumerable degrees. In particular, we summarize the current status of knowledge about the problem, provide an overview of how to prove these results, discuss directio ..."
Abstract
 Add to MetaCart
Abstract. We discuss the status of the problem of characterizing the finite (weak) lattices which can be embedded into the computably enumerable degrees. In particular, we summarize the current status of knowledge about the problem, provide an overview of how to prove these results, discuss directions which have been pursued to try to solve the problem, and present some related open questions. 1.