Results 1 
9 of
9
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Classification from a computable viewpoint
 The Bulletin of Symbolic Logic
"... Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
(Show Context)
Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism
Barwise: Infinitary Logic and Admissible Sets. The Bulletin of Symbolic Logic 10
, 2004
"... ..."
(Show Context)
The theory of the metarecursively enumerable degrees
"... Abstract. Sacks [Sa1966a] asks if the metarecursivley enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as O (ω) or, equival ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Sacks [Sa1966a] asks if the metarecursivley enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as O (ω) or, equivalently, that of the truth set of L ω CK
The Role of True Finiteness in the Admissible Recursively Enumerable Degrees
 Memoirs of the American Mathematical Society
"... Abstract. When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
Abstract. When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of αfiniteness. As examples we discuss both codings of models of arithmetic into the recursively enumerable degrees, and nondistributive lattice embeddings into these degrees. We show that if an admissible ordinal α is effectively close to ω (where this closeness can be measured by size or by cofinality) then such constructions may be performed in the αr.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the firstorder language of partially ordered sets, and so these results also show that there are natural elementary differences between the structures of αr.e. degrees for various classes of admissible ordinals α. Together with coding work which shows that for some α, the theory of the αr.e. degrees is complicated, we get that for every admissible ordinal
THE ROLE OF TRUE FINITENESS IN THE ADMISSIBLE RECURSIVELY ENUMERABLE DEGREES
, 2004
"... When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, ther ..."
Abstract
 Add to MetaCart
(Show Context)
When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of αfiniteness. As examples we discuss both codings of models of arithmetic into the recursively enumerable degrees, and nondistributive lattice embeddings into these degrees. We show that if an admissible ordinal α is effectively close to ω (where this closeness can be measured by size or by cofinality) then such constructions may be performed in the αr.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the firstorder language of partially ordered sets, and so these results also show that there are natural elementary differences between the structures of αr.e. degrees for various classes of admissible ordinals α. Together with coding work which shows that for some α, the theory of the αr.e. degrees is complicated, we get that for every admissible
GijRAN SUNDHOLM CONSTRUCTIONS, PROOFS AND THE MEANING OF LOGICAL CONSTANTS*
"... There are cases where we mix two or more exact concepts in one intuitive concept and then we seem to arrive at paradoxical results. Hao Wang. During the last decade both mathematicians and philosophers have been interested in the development of various theories of constructions. The study of these t ..."
Abstract
 Add to MetaCart
There are cases where we mix two or more exact concepts in one intuitive concept and then we seem to arrive at paradoxical results. Hao Wang. During the last decade both mathematicians and philosophers have been interested in the development of various theories of constructions. The study of these theories has been prompted by at least three sorts of considerations. The first theories were proposed by Kreisel around 1960 as a means of formalizing the intended interpreation for the intuitionistic logical constants as presented in Heyting’s Introduction from 1956. Here, in Kreisel’s version, the relation construction c proves proposition A was given a stepwise analysis according to the complexity of A, in much the same way as the truthtables provide such an analysis in the classical case.