Results 1 
7 of
7
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Classification from a computable viewpoint
 The Bulletin of Symbolic Logic
"... Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism
The theory of the metarecursively enumerable degrees
"... Abstract. Sacks [Sa1966a] asks if the metarecursivley enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as O (ω) or, equival ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. Sacks [Sa1966a] asks if the metarecursivley enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as O (ω) or, equivalently, that of the truth set of L ω CK
BARWISE: INFINITARY LOGIC AND ADMISSIBLE SETS
"... 1. Background on infinitary logic 2 1.1. Expressive power of Lω1ω 2 1.2. The backandforth construction 3 ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
1. Background on infinitary logic 2 1.1. Expressive power of Lω1ω 2 1.2. The backandforth construction 3
The Role of True Finiteness in the Admissible Recursively Enumerable Degrees
 Memoirs of the American Mathematical Society
"... Abstract. When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of αfiniteness. As examples we discuss both codings of models of arithmetic into the recursively enumerable degrees, and nondistributive lattice embeddings into these degrees. We show that if an admissible ordinal α is effectively close to ω (where this closeness can be measured by size or by cofinality) then such constructions may be performed in the αr.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the firstorder language of partially ordered sets, and so these results also show that there are natural elementary differences between the structures of αr.e. degrees for various classes of admissible ordinals α. Together with coding work which shows that for some α, the theory of the αr.e. degrees is complicated, we get that for every admissible ordinal